Buch, Englisch, Band 25, 429 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1770 g
Buch, Englisch, Band 25, 429 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1770 g
Reihe: Stochastic Modelling and Applied Probability
ISBN: 978-0-387-26045-7
Verlag: Springer
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. The authors approach stochastic control problems by the method of dynamic programming. The text covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games. Also covered are controlled Markov diffusions and viscosity solutions of Hamilton-Jacobi-Bellman equations. The authors use illustrative examples and selective material to connect stochastic control theory with other mathematical areas (e.g. large deviations theory) and with applications to engineering, physics, management, and finance.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
Deterministic Optimal Control.- Viscosity Solutions.- Optimal Control of Markov Processes: Classical Solutions.- Controlled Markov Diffusions in ?n.- Viscosity Solutions: Second-Order Case.- Logarithmic Transformations and Risk Sensitivity.- Singular Perturbations.- Singular Stochastic Control.- Finite Difference Numerical Approximations.- Applications to Finance.- Differential Games.