Buch, Englisch, 434 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g
Reihe: Information Systems and Applications, incl. Internet/Web, and HCI
10th International Conference, DaWak 2008 Turin, Italy, September 1-5, 2008, Proceedings
Buch, Englisch, 434 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g
Reihe: Information Systems and Applications, incl. Internet/Web, and HCI
ISBN: 978-3-540-85835-5
Verlag: Springer Berlin Heidelberg
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Technische Informatik Wartung & Reparatur
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Warehouse
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Technische Informatik Netzwerk-Hardware
Weitere Infos & Material
Conceptual Design and Modeling.- UML-Based Modeling for What-If Analysis.- Model-Driven Metadata for OLAP Cubes from the Conceptual Modelling of Data Warehouses.- An MDA Approach for the Development of Spatial Data Warehouses.- OLAP and Cube Processing.- Built-In Indicators to Discover Interesting Drill Paths in a Cube.- Upper Borders for Emerging Cubes.- Top_Keyword: An Aggregation Function for Textual Document OLAP.- Distributed Data Warehouse.- Summarizing Distributed Data Streams for Storage in Data Warehouses.- Efficient Data Distribution for DWS.- Data Partitioning in Data Warehouses: Hardness Study, Heuristics and ORACLE Validation.- Data Privacy in Data Warehouse.- A Robust Sampling-Based Framework for Privacy Preserving OLAP.- Generalization-Based Privacy-Preserving Data Collection.- Processing Aggregate Queries on Spatial OLAP Data.- Data Warehouse and Data Mining.- Efficient Incremental Maintenance of Derived Relations and BLAST Computations in Bioinformatics Data Warehouses.- Mining Conditional Cardinality Patterns for Data Warehouse Query Optimization.- Up and Down: Mining Multidimensional Sequential Patterns Using Hierarchies.- Clustering I.- Efficient K-Means Clustering Using Accelerated Graphics Processors.- Extracting Knowledge from Life Courses: Clustering and Visualization.- A Hybrid Clustering Algorithm Based on Multi-swarm Constriction PSO and GRASP.- Clustering II.- Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering.- Clustered Dynamic Conditional Correlation Multivariate GARCH Model.- Document Clustering by Semantic Smoothing and Dynamic Growing Cell Structure (DynGCS) for Biomedical Literature.- Mining Data Streams.- Mining Serial Episode Rules with Time Lags over Multiple Data Streams.- Efficient Approximate Mining of Frequent Patterns over Transactional Data Streams.- Continuous Trend-Based Clustering in Data Streams.- Mining Multidimensional Sequential Patterns over Data Streams.- Classification.- Towards a Model Independent Method for Explaining Classification for Individual Instances.- Selective Pre-processing of Imbalanced Data for Improving Classification Performance.- A Parameter-Free Associative Classification Method.- Text Mining and Taxonomy I.- The Evaluation of Sentence Similarity Measures.- Labeling Nodes of Automatically Generated Taxonomy for Multi-type Relational Datasets.- Towards the Automatic Construction of Conceptual Taxonomies.- Text Mining and Taxonomy II.- Adapting LDA Model to Discover Author-Topic Relations for Email Analysis.- A New Semantic Representation for Short Texts.- Document-Base Extraction for Single-Label Text Classification.- Machine Learning Techniques.- How an Ensemble Method Can Compute a Comprehensible Model.- Empirical Analysis of Reliability Estimates for Individual Regression Predictions.- User Defined Partitioning - Group Data Based on Computation Model.- Data Mining Applications.- Workload-Aware Histograms for Remote Applications.- Is a Voting Approach Accurate for Opinion Mining?.- Mining Sequential Patterns with Negative Conclusions.