Soroush / D Braatz | Artificial Intelligence in Manufacturing | Buch | 978-0-323-99135-3 | sack.de

Buch, Englisch, 340 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 540 g

Soroush / D Braatz

Artificial Intelligence in Manufacturing

Applications and Case Studies
Erscheinungsjahr 2024
ISBN: 978-0-323-99135-3
Verlag: Elsevier Science

Applications and Case Studies

Buch, Englisch, 340 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 540 g

ISBN: 978-0-323-99135-3
Verlag: Elsevier Science


Artificial Intelligence in Manufacturing: Applications and Case Studies provides detailed technical descriptions of emerging applications of AI in manufacturing using case studies to explain implementation. Artificial intelligence is increasingly being applied to all engineering disciplines, producing insights into how we understand the world and allowing us to create products in new ways. This book unlocks the advantages of this technology for manufacturing by drawing on work by leading researchers who have successfully used it in a range of applications. Processes including additive manufacturing, pharmaceutical manufacturing, painting, chemical engineering and machinery maintenance are all addressed.

Case studies, worked examples, basic introductory material and step-by-step instructions on methods make the work accessible to a large group of interested professionals.

Soroush / D Braatz Artificial Intelligence in Manufacturing jetzt bestellen!

Weitere Infos & Material


1. Machine Learning in Paints and Coatings
2. Machine Learning in Lithium-ion Batteries
3. Machine Learning for Emerging Two-phase Cooling Technologies
4. Algorithm-driven Design of Composite Materials Realized through Additive Manufacturing
5. Machine-learning-based Monitoring of Laser Powder Bed Fusion
6. Data Analytics and Cyber-physical Systems for Maintenance and Service Innovation
7. Machine Learning in Catalysis
8. Artificial Intelligence in Petrochemical Industry
9. Machine Learning-assisted Plasma Medicine
10. Dynamic Data Feature Engineering for Process Operation Troubleshooting
11. Geometric Structure-Property Relationships Captured by Theory-Guided, Interpretable Machine Learning
12. Molecular Design Blueprints from Machine Learning for Catalysts and Materials
13. Physics-driven Machine Learning for Characterizing Surface Microstructure of Complex Materials
14. Process Performance Assessment Using Machine Learning
15. Artificial Intelligence in Chemical Engineering
16. Production of Polymer Films with Optimal Properties Using Machine Learning


D Braatz, Richard
Dr. Richard D. Braatz is the Edwin R. Gilliland Professor of Chemical Engineering at MIT, specializing in advanced manufacturing systems. His research focuses on process data analytics, mechanistic modeling, and robust control systems, particularly in monoclonal antibody, vaccine, and gene therapy production. He holds an M.S. and Ph.D. from Caltech and previously served as a professor at the University of Illinois and a visiting scholar at Harvard. Dr. Braatz has received several prestigious awards, including the Donald P. Eckman Award and the Curtis W. McGraw Research Award, and is a Fellow of multiple professional organizations and a member of the U.S. National Academy of Engineering.

Soroush, Masoud
Masoud Soroush is the George B. Francis Chair Professor of Engineering at Drexel University and directs the Future Layered nAnomaterials Knowledge and Engineering (FLAKE) Consortium, collaborating with over 30 researchers from Drexel, the University of Pennsylvania, and Purdue. He has held positions as a Visiting Scientist at DuPont and a Visiting Professor at Princeton. An Elected Fellow of AIChE and Senior Member of IEEE, Soroush has received numerous awards, including the AIChE 2023 Excellence in Process Development Research Award. He holds a BS from Abadan Institute of Technology and MS/PhD degrees from the University of Michigan, with research focusing on advanced manufacturing and nanomaterials.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.