Sprang | Mechanisms and Pathways of Heterotrimeric G Protein Signaling | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 74, 290 Seiten, Web PDF

Reihe: Advances in Protein Chemistry

Sprang Mechanisms and Pathways of Heterotrimeric G Protein Signaling


1. Auflage 2007
ISBN: 978-0-08-055269-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band Volume 74, 290 Seiten, Web PDF

Reihe: Advances in Protein Chemistry

ISBN: 978-0-08-055269-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume in the Advances in Protein Chemistry series features cutting-edge articles on topics in protein chemistry. This volume includes chapters on the structural basis of effector regulation and signal termination in heterotrimeric G?Ñ?n?nproteins; How do receptors activate G proteins; Some mechanistic insights into GPCR activation from detergent solubilized ternary complexes on beads; Activation of G protein coupled receptors; Kinetic analysis of g-protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells; Regulation of Rho Guanine Nucleotide Exchange Factors (RhoGEFs) by G proteins.

Sprang Mechanisms and Pathways of Heterotrimeric G Protein Signaling jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Contents;4
3;Preface;6
4;Chapter 1: Structural Basis of Effector Regulation and Signal Termination in Heterotrimeric Galpha Proteins;10
4.1;I. Introduction and Scope;12
4.2;II. A Selective Survey of Galpha Protein Structure and Function;14
4.3;III. Mechanisms of Effector Recognition and Regulation by GalphabullGTP;18
4.3.1;A. A Common Galpha:Effector Interface;20
4.3.2;B. Functional Consequences of Galpha:Effector Binding;24
4.4;IV. Signal Termination: The Mechanism of GTP Hydrolysis and Conformational Deactivation;32
4.4.1;A. Structure of the Ground State for GTP Hydrolysis;34
4.4.2;B. Reaction Trajectory for GTP Hydrolysis;37
4.5;V. Signal Termination Through GAPs and Effector GAP Domains;47
4.5.1;A. Deactivation of Galphaq by PLCbeta;48
4.5.2;B. RGS GAPs;50
4.5.3;C. Synergy Between RGS and Effector Domains;55
4.5.4;D. Deactivation of Galpha 13 by the alphaGAP Element of p115RhoGEF;56
4.6;VI. Conclusions;60
4.7;Acknowledgments;61
4.8;References;61
5;Chapter 2: How do Receptors Activate G Proteins?;76
5.1;I. Introduction;76
5.1.1;A. Structure of Heptahelical Receptors;77
5.1.2;B. Heterotrimeric G Protein Structure;79
5.2;II. Toward a Model of the Receptor-G Protein Complex;81
5.2.1;A. Structural Determinants of Receptor-G Protein Specificity;81
5.2.2;B. Point to Point Interactions Between Receptors and G Proteins;86
5.2.3;C. Current Approaches to Modeling the Receptor-G Protein Complex;86
5.3;III. Molecular Basis for G Protein Activation;89
5.4;IV. Summary and Conclusions;93
5.5;References;95
6;Chapter 3: Some Mechanistic Insights into GPCR Activation from Detergent-Solubilized Ternary Complexes on Beads;104
6.1;I. Perspectives;105
6.2;II. Survey of Experimental Approaches and Representative Data;108
6.2.1;A. Flow Cytometric Approaches to Assess GPCR Function In Vivo;108
6.2.2;B. Rapid Mix Flow Cytometry;109
6.2.3;C. Modular Assembly of Molecular Complexes on Beads;109
6.3;III. Analysis of Soluble Receptor Ternary Complex Assemblies;113
6.3.1;A. General Considerations;113
6.3.2;B. Simple Ternary Complex Model: General Considerations;114
6.3.3;C. Application of Ternary Complex Model;117
6.3.4;D. Landscapes of G-Bead Assemblies Based on Application of Experimentally Derived Binding Constants to the Ternary Complex Model;118
6.3.5;E. Ternary Complex Analysis of Soluble Receptor Assemblies;120
6.3.6;F. Are Unique Conformational Changes in Receptors Elicited by Interactions with Ligands Resulting in Varied G Protein Interactions by the Ligand-Bound Receptor?;124
6.4;IV. Guanine Nucleotide Activation of Ternary Complex: Some Dynamic Aspects of Structure and Reactivity;126
6.4.1;A. General Considerations;126
6.4.2;B. Structural Studies;127
6.4.3;C. Some Dynamic Aspects of GPCR Activation;128
6.4.4;D. Modular Disassembly of the Ternary Complexes: Guanine Nucleotide Activation Causes the Rapid Separation of the GPCR and Ligand from the G Protein;130
6.4.5;E. GDP Activity?;134
6.4.6;F. Galpha Subunit Dissociation?;135
6.4.7;G. Outlook;136
6.5;Acknowledgments;137
6.6;References;137
7;Chapter 4: Activation of G Protein-Coupled Receptors;146
7.1;I. Introduction;147
7.2;II. Structural and Mechanistic Homology Among GPCRs;149
7.2.1;A. Rhodopsin as a Structural Model for GPCRs;149
7.2.2;B. GPCRs Activated by Diffusible Agonists;150
7.2.3;C. GPCR Oligomers;151
7.3;III. Conformational States;152
7.3.1;A. Basal Activity and Ligand Efficacy;153
7.3.2;B. Multiple Agonist-Specific States;154
7.3.3;C. Defining the "Active State";155
7.4;IV. Activation by Agonists;157
7.4.1;A. Insights from Constitutively Active Mutants;157
7.4.2;B. Molecular Switches;159
7.4.3;C. Activation of Molecular Switches by Ligands;162
7.4.4;D. Agonist Binding and Activation Is a Multistep Process;164
7.4.5;E. The beta2AR as a Model System for Ligand Binding and Activation: Biophysical Analysis of Agonist-Induced Conformational Changes;164
7.5;V. Concluding Remarks;168
7.6;References;168
8;Chapter 5: Kinetic Analysis of G Protein-Coupled Receptor Signaling Using Fluorescence Resonance Energy Transfer in Living Cells;176
8.1;I. Introduction;176
8.2;II. Assays and Methods;179
8.2.1;A. Principle of the Assays;179
8.2.2;B. Construction and Expression of Fluorescent Receptor and G Protein Constructs;185
8.2.3;C. Microscopic FRET Measurements and Imaging;186
8.3;III. Results and Discussion;188
8.3.1;A. Agonist Binding;188
8.3.2;B. Receptor Activation;189
8.3.3;C. Receptor-G Protein Interaction;191
8.3.4;D. G Protein Activation;192
8.4;IV. Conclusions;193
8.5;Acknowledgments;194
8.6;References;194
9;Chapter 6: Regulation of Rho Guanine Nucleotide Exchange Factors by G Proteins;198
9.1;I. Introduction;199
9.1.1;A. Intrinsic Mechanisms of G Proteins;199
9.1.2;B. Regulation of Rho Proteins by Heterotrimeric G Proteins;202
9.2;II. RGS-RhoGEFs;202
9.2.1;A. Discovery and Relationships;202
9.2.2;B. The RGS Domain and GTPase Activity;205
9.2.3;C. The DH and PH Domains: Structure and Relative Activities;209
9.3;III. Mechanisms of Regulation;210
9.3.1;A. Direct Regulation of GEF Activity by G12 and G13;210
9.3.2;B. Indirect Regulation of RGS-RhoGEF Activity;212
9.3.3;C. Role of the C-Terminus in Oligomerization and Regulation of In Vivo Activity;214
9.3.4;D. Specificity of Regulation by G Proteins;215
9.3.5;E. Regulation of RGS-RhoGEFs by Phosphorylation;217
9.3.6;F. Function of the PDZ Domain;218
9.3.7;G. Expression of PDZ-RhoGEFs;222
9.4;IV. Physiological Function of the RGS-RhoGEFs;222
9.4.1;A. Pathway Specificity;223
9.4.2;B. Regulation in Hematopoietic Cells;223
9.4.3;C. Interactions with Other Proteins;225
9.5;Acknowledgments;230
9.6;References;230
10;Author Index;238
11;Subject Index;256



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.