Sridhar / Moulik | Membrane Processes | Buch | 978-1-119-41822-1 | sack.de

Buch, Englisch, 504 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 873 g

Sridhar / Moulik

Membrane Processes

Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations
1. Auflage 2018
ISBN: 978-1-119-41822-1
Verlag: Wiley

Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations

Buch, Englisch, 504 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 873 g

ISBN: 978-1-119-41822-1
Verlag: Wiley


A reference for engineers, scientists, and academics who want to be abreast of the latest industrial separation/treatment technique, this new volume aims at providing a holistic vision on the potential of advanced membrane processes for solving challenging separation problems in industrial applications.

Separation processes are challenging steps in any process industry for isolation of products and recycling of reactants. Membrane technology has shown immense potential in separation of liquid and gaseous mixtures, effluent treatment, drinking water purification and solvent recovery. It has found endless popularity and wide acceptance for its small footprint, higher selectivity, scalability, energy saving capability and inherent ease of integration into other unit operations. There are many situations where the target component cannot be separated by distillation, liquid extraction, and evaporation. The different membrane processes such as pervaporation, vapor permeation and membrane distillation could be used for solving such industrial bottlenecks.

This book covers the entire array of fundamental aspects, membrane synthesis and applications in the chemical process industries (CPI). It also includes various applications of pervaporation, vapor permeation and membrane distillation in industrially and socially relevant problems including separation of azeotropic mixtures, close-boiling compounds, organic–organic mixtures, effluent treatment along with brackish and seawater desalination, and many others. These processes can also be applied for extraction of small quantities of value-added compounds such as flavors and fragrances and selective removal of hazardous impurities, viz., volatile organic compounds (VOCs) such as vinyl chloride, benzene, ethyl benzene and toluene from industrial effluents.

Including case studies, this is a must-have for any process or chemical engineer working in the industry today. Also valuable as a learning tool, students and professors in chemical engineering, chemistry, and process engineering will benefit greatly from the groundbreaking new processes and technologies described in the volume.

Sridhar / Moulik Membrane Processes jetzt bestellen!

Weitere Infos & Material


Preface xvii

1 Tackling Challenging Industrial Separation Problems through Membrane Processes 1
Siddhartha Moulik, Sowmya Parakala and S. Sridhar

1.1 Water: The Source of Life 2

1.2 Significance of Water/Wastewater Treatment 5

1.3 Wastewater Treatment Techniques 8

1.4 Membrane Technologies for Water/Wastewater Treatment 11

1.5 Membranes: Materials, Classification and Configurations 12

1.5.1 Types of Membranes 12

1.5.1.1 Symmetric Membranes 12

1.5.1.2 Asymmetric Membranes 13

1.5.1.3 Electrically Charged Membranes 14

1.5.1.4 Inorganic Membranes 14

1.5.2 Membranes Modules and Their Characteristics 14

1.6 Introduction to Membrane Processes 17

1.6.1 Conventional Membrane Processes 17

1.7 CSIR-IICT’s Contribution for Water/Wastewater Treatment 21

1.7.1 Nanofiltration Plant for Processing Coke Oven Wastewater in Steel Industry 22

1.8 Potential of Pervaporation (PV), Vapor Permeation (VP), and Membrane Distillation (MD) in Wastewater Treatment 24

1.9 Conclusion 32

References 33

2 Pervaporation Membrane Separation: Fundamentals and Applications 37
Siddhartha Moulik, Bukke Vani, D. Vaishnavi and S. Sridhar

2.1 Introduction and Historical Perspective 38

2.2 Principle 40

2.2.1 Mass Transfer 42

2.2.2 Factors Affecting Membrane Performance 44

2.3 Membranes for Pervaporation 45

2.4 Applications of Pervaporation 46

2.4.1 Solvent Dehydration 46

2.4.2 Organophilic Separation 55

2.4.2.1 Removal of VOCs 57

2.4.2.2 Extraction of Aroma Compounds 58

2.4.3 Organic/Organic Separation 64

2.4.3.1 Separation of Polar/Non-Polar Mixture 64

2.4.3.2 Separation of Aromatic/Alicyclic Mixtures 70

2.4.3.3 Separation of Aromatic/Aliphatic/Aromatic Hydrocarbons 71

2.4.3.4 Separation of Isomers 72

2.5 Conclusions and Future Prospects 77

References 78

3 Pervaporation for Ethanol-Water Separation and Effect of Fermentation Inhibitors 89
Anjali Jain, Sushant Upadhyaya, Ajay K. Dalai and Satyendra P. Chaurasia

3.1 Introduction 90

3.2 Theory of Pervaporation 91

3.2.1 Applications of Pervaporation 92

3.2.2 Advantages of Pervaporation 93

3.2.3 Pervaporation Performance Evaluation Parameters 93

3.3 Various Membranes Used for the Recovery of Ethanol 94

3.3.1 Organic Membranes 94

3.3.2 Inorganic Membranes 102

3.3.3 Mixed Matrix Membranes 104

3.4 Effects of Process Variables on Ethanol Concentration in PV 106

3.4.1 Effect of Feed Flow Rate 106

3.4.2 Effect of Ethanol Concentration in Feed 107

3.4.3 Effect of Feed Temperature 108

3.4.4 Effect of Permeate Pressure 109

3.5 Effect of Fermentation Inhibitors on Pervaporation Performance 109

3.5.1 Effect of Furfural Concentration 112

3.5.2 Influence of Hydroxymethyl-Furfural 113

3.5.3 Effect of Vanillin 114

3.5.4 Effect of Acetic Acid 115

3.5.5 Effect of Catechol 116

3.6 Conclusions 116

References 117

4 Dehydration of Acetonitrile Solvent by Pervaporation through Graphene Oxide/Poly(Vinyl Alcohol) Mixed Matrix Membranes 123
Siddhartha Moulik, D.Vaishnavi and S.Sridhar

4.1 Introduction 124

4.2 Materials and Methods 126

4.2.1 Materials 126

4.2.2 Preparation of Graphene Oxide 126

4.2.3 Fabrication of GO Membrane 127

4.2.4 Structural Characterization of GO/PVA Mixed Matrix Membrane 127

4.2.5 Pervaporation Experiments 127

4.2.6 Determination of Diffusion Coefficients 129

4.2.7 Membrane Characterization 130

4.2.8 Hydrodynamic Simulation 130

4.2.8.1 Specification of Computational Domain and Governing Equations 130

4.3 Results and Discussions 132

4.3.1 Scanning Electron Microscope 132

4.3.2 Differential Scanning Calorimeter 132

4.3.3 Effect of GO concentration on PV Performance 134

4.3.4 Sorption Behavior 135

4.3.5 Concentration Distribution of Water within the Membrane 135

4.3.6 Effect of Feed Water Concentration 137

4.3.7 Effect of Permeate Pressure 137

4.4 Conclusions 139

References 139

5 Recovery of Acetic Acid from Vinegar Wastewater Using Pervaporation in a Pilot Plant 141
Haresh K Dave and Kaushik Nath

5.1 Introduction 142

5.2 Materials and Methods 144

5.2.1 Chemicals and Membranes 144

5.2.2 Preparation and Cross-Linking of Membrane 144

5.2.3 Equilibrium Sorption in PVA-PES Membrane 144

5.2.4 Permeation Experimental Study 145

5.2.5 Flux and Separation Factor 146

5.2.6 Permeability and Membrane Selectivity 147

5.2.7 Diffusion and Partition Coefficient 147

5.2.8 Thermogravimetric Analysis 148

5.2.9 FTIR Analysis 148

5.2.10 AFM and SEM Analysis 148

5.2.11 Mechanical Properties 149

5.3 Results and Discussion 149

5.3.1 Sorption in PVA-PES Membrane 149

5.3.2 Effect of Feed Composition on Flux and Separation Factor 151

5.3.3 Activation Energy and Heat of Sorption 152

5.3.4 Permeability, Permeance and Intrinsic Membrane Selectivity 153

5.3.5 Diffusion and Partition Coefficient 154

5.3.6 Thermogravimetric Analysis 156

5.3.7 Surface Chemistry by FTIR Analysis 156

5.3.8 Surface Topology by AFM Analysis 159

5.3.9 Surface Topology by SEM Analysis 161

5.3.10 Mechanical Properties of the Membrane 162

5.3.11 Reusability of the Membrane 163

5.4 Conclusion 164

Nomenclature 165

Acknowledgement 165

References 166

6 Thermodynamic Models for Prediction of Sorption Behavior in Pervaporation 169
Reddi Kamesh, Sumana Chenna and K. Yamuna Rani

6.1 Introduction 170

6.2 Thermodynamic Models for Sorption 172

6.2.1 Flory-Huggins Models 172

6.2.1.1 Models for Sing


Dr. Sundergopal Sridhar, PhD. is a chemical engineer from the University College of Technology, Osmania University, Hyderabad. He has been working as a scientist in the area of membrane separation processes at the Indian Institute of Chemical Technology in Hyderabad for the past 20 years and has published over 130 research papers and is the recipient of 30 prestigious scientific awards.
Siddhartha Moulik is a scientist at the Indian Institute of Chemical Technology in Hyderabad. He has published 16 research papers in various international journals, 2 book chapters, and 39 papers in conference proceedings. He is also the recipient of 8 prestigious awards in his field.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.