Buch, Englisch, 208 Seiten, Format (B × H): 163 mm x 241 mm, Gewicht: 474 g
Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition
Buch, Englisch, 208 Seiten, Format (B × H): 163 mm x 241 mm, Gewicht: 474 g
Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition
ISBN: 978-1-4398-0615-9
Verlag: Taylor & Francis Inc
Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications.
Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properties, computational aspects, and applications of many multi-label dimensionality reduction algorithms. It explores numerous research questions, including:
- How to fully exploit label correlations for effective dimensionality reduction
- How to scale dimensionality reduction algorithms to large-scale problems
- How to effectively combine dimensionality reduction with classification
- How to derive sparse dimensionality reduction algorithms to enhance model interpretability
- How to perform multi-label dimensionality reduction effectively in practical applications
The authors emphasize their extensive work on dimensionality reduction for multi-label learning. Using a case study of Drosophila gene expression pattern image annotation, they demonstrate how to apply multi-label dimensionality reduction algorithms to solve real-world problems. A supplementary website provides a MATLAB® package for implementing popular dimensionality reduction algorithms.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
Weitere Infos & Material
Introduction. Partial Least Squares. Canonical Correlation Analysis. Hypergraph Spectral Learning. A Scalable Two-Stage Approach for Dimensionality Reduction. A Shared-Subspace Learning Framework. Joint Dimensionality Reduction and Classification. Nonlinear Dimensionality Reduction: Algorithms and Applications. Appendix. References. Index.