E-Book, Englisch, 93 Seiten, eBook
Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Suzuki / Reyes / Syeda-Mahmood Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
1. Auflage 2019
ISBN: 978-3-030-33850-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Second International Workshop, iMIMIC 2019, and 9th International Workshop, ML-CDS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
E-Book, Englisch, 93 Seiten, eBook
Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics
ISBN: 978-3-030-33850-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019).- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification.- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics.- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis.- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection.- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules.- Deep neural network or dermatologist?.- Towards Interpretability of Segmentation Networks by analyzing DeepDreams.- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019).- Towards Automatic Diagnosis from Multi-modal Medical Data .- Deep Learning based Multi-Modal Registration for Retinal Imaging .- Automated Enriched Medical Concept Generation for Chest X-ray Images .