Buch, Englisch, Band 18, 218 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Buch, Englisch, Band 18, 218 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Reihe: Mathematical Modelling: Theory and Applications
ISBN: 978-90-481-6398-4
Verlag: Springer Netherlands
The book is devoted to the study of limit theorems and stability of evolving biologieal systems of "particles" in random environment. Here the term "particle" is used broadly to include moleculas in the infected individuals considered in epidemie models, species in logistie growth models, age classes of population in demographics models, to name a few. The evolution of these biological systems is usually described by difference or differential equations in a given space X of the following type and dxt/dt = g(Xt, y), here, the vector x describes the state of the considered system, 9 specifies how the system's states are evolved in time (discrete or continuous), and the parameter y describes the change ofthe environment. For example, in the discrete-time logistic growth model or the continuous-time logistic growth model dNt/dt = r(y)Nt(l-Nt/K(y)), N or Nt is the population of the species at time n or t, r(y) is the per capita n birth rate, and K(y) is the carrying capacity of the environment, we naturally have X = R, X == Nn(X == Nt), g(x, y) = r(y)x(l-xl K(y)), xE X. Note that n t for a predator-prey model and for some epidemie models, we will have that X = 2 3 R and X = R, respectively. In th case of logistic growth models, parameters r(y) and K(y) normaIly depend on some random variable y.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Wirtschaftspolitik, politische Ökonomie
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Demographie, Demoskopie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Vorklinische Medizin: Grundlagenfächer Humangenetik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Arbeitsmarkt
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Naturwissenschaften Biowissenschaften Molekularbiologie
Weitere Infos & Material
1 Random Media.- 2 Limit Theorems for Difference Equations in Random Media.- 3 Epidemic Models.- 4 Genetic Selection Models.- 5 Branching Models.- 6 Demographic Models.- 7 Logistic Growth Models.- 8 Predator-Prey Models.