Takane | Constrained Principal Component Analysis and Related Techniques | E-Book | sack.de
E-Book

Takane Constrained Principal Component Analysis and Related Techniques


Erscheinungsjahr 2013
ISBN: 978-1-4665-5668-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 251 Seiten

Reihe: Chapman & Hall/CRC Monographs on Statistics & Applied Probability

ISBN: 978-1-4665-5668-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data.

- How can regression analysis and PCA be combined in a beneficial way?

- Why and when is it a good idea to combine them?

- What kind of benefits are we getting from them?

Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches.

The book begins with four concrete examples of CPCA that provide readers with a basic understanding of the technique and its applications. It gives a detailed account of two key mathematical ideas in CPCA: projection and singular value decomposition. The author then describes the basic data requirements, models, and analytical tools for CPCA and their immediate extensions. He also introduces techniques that are special cases of or closely related to CPCA and discusses several topics relevant to practical uses of CPCA. The book concludes with a technique that imposes different constraints on different dimensions (DCDD), along with its analytical extensions. MATLAB® programs for CPCA and DCDD as well as data to create the book’s examples are available on the author’s website.

Takane Constrained Principal Component Analysis and Related Techniques jetzt bestellen!

Zielgruppe


Statisticians, psychometricians, and biometricians; researchers in machine learning, computer image processing, and engineering; graduate students in statistics.


Autoren/Hrsg.


Weitere Infos & Material


Yoshio Takane is an emeritus professor at McGill University and an adjunct professor at the University of Victoria. He is a former president of the Psychometric Society and a recipient of a Career Award from the Behaviormetric Society of Japan and a Special Award from the Japanese Psychological Association. His recent interests include regularization techniques for multivariate data analysis, acceleration methods for iterative model fitting, the development of structural equation models for analyzing brain connectivity, and various kinds of singular value decompositions. He earned his DL from the University of Tokyo and PhD from the University of North Carolina at Chapel Hill.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.