Buch, Englisch, 816 Seiten, Format (B × H): 174 mm x 249 mm, Gewicht: 1842 g
Determining Properties and Performance
Buch, Englisch, 816 Seiten, Format (B × H): 174 mm x 249 mm, Gewicht: 1842 g
ISBN: 978-3-527-34966-1
Verlag: Wiley-VCH GmbH
Comprehensive summary of the properties and performance of experimental analytical techniques for a wide range of electrochemical energy storage materials
Energy Storage Materials Characterization summarizes the basic methods used to determine the properties and performance of energy storage materials and details a wide range of techniques used in electrochemical testing, including X-ray, neutron, optical, microwave, electron, and scanning probe techniques. Representative examples of each technique are presented to illustrate their powerful capabilities and offer a general strategy for future development of the original techniques.
Preceding the main text, a helpful introduction covers topics including the overall energy consumption structure of the modern world, various existing forms of energy and electrochemical energy storage, known problems with energy storage materials such as lithium-ion batteries, and specifics of electrochemical impedance spectroscopy (EIS).
Written by two highly qualified academics with significant research experience in the field, Energy Storage Materials Characterization includes information such as: - Photoemission spectroscopy, X-ray pair distribution function to investigate battery systems, and cryo-electron microscopy
- X-ray diffraction, absorption spectroscopy, fluorescence and tomography microscopy, and neutron scattering, depth profile, and imaging
- UV-Vis spectroscopy for energy storage and related materials, Raman spectroscopy, Fourier transform infrared spectroscopy, and optical microscopy
- Structural and chemical characterization of alkali-ion battery materials using electron energy-loss spectroscopy coupled with transmission electron microscopy
Energy Storage Materials Characterization is an essential up-to-date reference on the subject for chemists and materials scientists involved in research related to improving electrochemical energy storage systems for superior battery performance.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter I. Introduction
Part I X-ray techniques
Chapter 2. X-ray Diffraction
Chapter 3. X-ray Absorption Spectroscopy
Chapter 4. Photoemission spectroscopy for energy storage materials
Chapter 5. Application of X-ray pair distribution function (PDF) to investigate battery systems
Chapter 6. X-ray Fluorescence Microscopy
Chapter 7. X-ray Tomography Microscopy
Chapter 8. Transmission X-ray Microscopy
Chapter 9. Coherent X-ray Diffraction Imaging
Part II. Neutron techniques
Chapter 10. A General Introduction of Neutron Techniques
Chapter 11. Neutron Diffraction for Energy Storage Materials
Chapter 12. Neutron Scattering
Chapter 13. Neutron Depth Profile
Chapter 14. Neutron Imaging
Part III. Optical techniques
Chapter 15. UV-Vis Spectroscopy for Energy Storage and Related Materials
Chapter 16. Raman Spectroscopy
Chapter 17. Fourier Transform Infrared Spectroscopy
Chapter 18. Optical Microscopy
Part IV. Microwave techniques
Chapter 19. Nuclear Magnetic Resonance
Chapter 20. Electron Paramagnetic Resonance
Part V. Electron techniques
Chapter 21. Morphology dependent energy storage performance of supercapacitors and batteries: Scanning Electron Microscopy as an essential tool for material characterization
Chapter 22. Transmission Electron Microscopy
Chapter 23. Cryo-Electron Microscopy
Chapter 24. Structural/chemical characterization of alkali-ion battery materials using electron energy-loss spectroscopy coupled with transmission electron microscopy
Chapter 25. Scanning Tunneling Microscopy
Part VI. Advanced techniques
Chapter 26. Combined in-situ techniques
Chapter 27. Non-destructive techniques