E-Book, Englisch, Band 67, 110 Seiten, eBook
Reihe: Lecture Notes in Statistics
Tanner Tools for Statistical Inference
Erscheinungsjahr 2012
ISBN: 978-1-4684-0510-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Observed Data and Data Augmentation Methods
E-Book, Englisch, Band 67, 110 Seiten, eBook
Reihe: Lecture Notes in Statistics
ISBN: 978-1-4684-0510-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. Introduction.- A. Problems.- B. Techniques.- References.- II. Observed Data Techniques-Normal Approximation.- A. Likelihood/Posterior Density.- B. Maximum Likelihood.- C. Normal Based Inference.- D. The Delta Method.- E. Significance Levels.- References.- III. Observed Data Techniques.- A. Numerical Integration.- B. Litplace Expansion.- C. Monte Carlo Methods.- IV. The EM Algorithm.- A. Introduction.- B. Theory.- C. EM in the Exponential Family.- D. Standard Errors.- E. Monte Carlo Implementation of the E-Step.- F. Acceleration of EM.- References.- V. Data Augmentation.- A. Introduction.- B. Predictive Distribution.- C. HPD Region Computations.- D. Implementation.- E. Theory.- F. Poor Man’s Data Augmentation.- G. SIR.- H. General Imputation Methods.- I. Data Augmentation via Importance Sampling.- J. Sampling in the Context of Multinomial Data.- VI. The Gibbs Sampler.- A. Introduction.- B. Examples.- C. The Griddy Gibbs Sampler.