Tao / Zhang / Ma | Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management | Buch | 978-0-443-13189-9 | sack.de

Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 550 g

Tao / Zhang / Ma

Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management


Erscheinungsjahr 2024
ISBN: 978-0-443-13189-9
Verlag: Elsevier Science & Technology

Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 550 g

ISBN: 978-0-443-13189-9
Verlag: Elsevier Science & Technology


Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management presents the state of the art in hybrid electric vehicle system modeling and management. With a focus on learning-based energy management strategies, this book provides detailed methods, mathematical models, and strategies designed to optimize the energy management of the energy supply module of a hybrid vehicle.

This book first addresses the underlying problems in Hybrid Electric Vehicle (HEV) modeling, and then introduces several artificial intelligence-based energy management strategies of HEV systems, including those based on fuzzy control with driving pattern recognition, multiobjective optimization, fuzzy Q-learning and Deep Deterministic Policy Gradient (DDPG) algorithms. To help readers apply these management strategies, this book also introduces State of Charge and State of Health prediction methods and real-time driving pattern recognition. For each application, the detailed experimental process, program code, experimental results, and algorithm performance evaluation are provided.

Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management is a valuable reference for anyone involved in the modeling and management of hybrid electric vehicles, and will be of interest to graduate students, researchers, and professionals working on HEVs in the fields of energy, electrical, and automotive engineering.
Tao / Zhang / Ma Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management jetzt bestellen!

Weitere Infos & Material


Preface
Acknowledgments
1. Introduction
2. System modeling of lithiumeion battery, PEMFC, and supercapacitor in HEV
3. Neural network modeling for SOH of lithium-ion battery and performance degradation prediction of fuel cell
4.Optimal fuzzy energy management for fuel cell/supercapacitor systems using neural network-based driving pattern recognition
5. Optimal fuzzy energy management system optimization based on NSGA-III-SD for lithium battery/supercapacitor HEV
6. Q learning-based hybrid energy management strategy
7. Improved DDPG hybrid energy management strategy based on LSH
8. Further idea on meta EMS for HEV
Index


Tao, Jili
Jili Tao received the B.Sc. and M.Sc. degrees from Central South University, Changsha, China, in 2001 and 2004, respectively, and the Ph.D. degree from Zhejiang University, Hangzhou, China, in 2007. She is currently an Associate Professor with the Institute of Ningbo Technology, Zhejiang University, Ningbo, China. Her current research interests include intelligent optimization, modeling, and its applications to electronic system design and control system design for HEV, chemical processes.

Ma, Longhua
Longhua Ma received the B.S. degree in industrial electrical automation from Lanzhou Jiaotong University,Lanzhou, China, in 1986, the M.S. degree and Ph.D. degree in control science and engineering from Zhejiang University, Hangzhou, China, in 1993 and 2002, respectively. He was an associate research fellow with National engineering research center for industrial automation, Zhejiang University, Hangzhou, China from 1993 to 2008.From 2008 to 2012, he was an associate professor with School of aeronautics and astronautics, Zhejiang University, Hangzhou, China. Currently, he is a professor with Ningbo Industrial Internet Institute, Ningbo, China. He has (co)author four books and published over 70 international journal and conference papers. His currently research interests include network security, new energy and electric vehicle energy management and control and inertial navigation theory and application.

Zhang, Ridong
Ridong Zhang received the Ph.D. degree in control science and engineering from Zhejiang University, Hangzhou, China, in 2007. From 2012 to 2016, he was a Visiting Professor with the Chemical and Biomolecular Engineering Department, The Hong Kong University of Science and Technology, Hong Kong. He is currently a Professor with the Institute of Information and Control, Hangzhou Dianzi University, Hangzhou. His current research interests include modeling and control for chemical nonlinear systems and HEV.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.