Teodorescu | Mechanical Systems, Classical Models | Buch | 978-90-481-8044-8 | sack.de

Buch, Englisch, 564 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 855 g

Reihe: Mathematical and Analytical Techniques with Applications to Engineering

Teodorescu

Mechanical Systems, Classical Models

Volume II: Mechanics of Discrete and Continuous Systems
1. Auflage. Softcover version of original hardcover Auflage 2009
ISBN: 978-90-481-8044-8
Verlag: Springer Netherlands

Volume II: Mechanics of Discrete and Continuous Systems

Buch, Englisch, 564 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 855 g

Reihe: Mathematical and Analytical Techniques with Applications to Engineering

ISBN: 978-90-481-8044-8
Verlag: Springer Netherlands


As it was already seen in the first volume of the present book, its guideline is precisely the mathematical model of mechanics. The classical models which we refer to are in fact models based on the Newtonian model of mechanics, on its five principles, i. e.: the inertia, the forces action, the action and reaction, the parallelogram and the initial conditions principle, respectively. Other models, e. g., the model of attraction forces between the particles of a discrete mechanical system, are part of the considered Newtonian model. Kepler’s laws brilliantly verify this model in case of velocities much smaller than the light velocity in vacuum. The non-classical models are relativistic and quantic. Mechanics has as object of study mechanical systems. The first volume of this book dealt with particle dynamics. The present one deals with discrete mechanical systems for particles in a number greater than the unity, as well as with continuous mechanical systems. We put in evidence the difference between these models, as well as the specificity of the corresponding studies; the generality of the proofs and of the corresponding computations yields a common form of the obtained mechanical results for both discrete and continuous systems. We mention the thoroughness by which the dynamics of the rigid solid with a fixed point has been presented. The discrete or continuous mechanical systems can be non-deformable (e. g.

Teodorescu Mechanical Systems, Classical Models jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Dynamics of Discrete Mechanical Systems.- Dynamics of Continuous Mechanical Systems.- Other Considerations on Dynamics of Mechanical Systems.- Dynamics of the Rigid Solid.- Dynamics of the Rigid Solid with a Fixed Point.- Other Considerations on the Dynamics of the Rigid Solid.- Dynamics of Systems of Rigid Solids.


Prof. Dr. Doc. Petre P. Teodorescu
: June 30, 1929, Bucuresti.
: Faculty of Mathematics of the University of Bucharest, 1952; Faculty of Bridges of the Technical University of Civil Engineering, Bucharest, 1953.
: "Calculus of rectangular deep beams in a general case of support and loading", Technical University of Civil Engineering, Bucharest, 1955.
: Consulting Professor.
at the University of Bucharest, Faculty of Mathematics.
: Mechanics of Deformable Solids (especially Elastic Solids), Mathematical Methods of Calculus in Mechanics.
:
1. "Applications of the Theory of Distributions in Mechanics", Editura Academiei-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1974 (with W. Kecs);
2. "Dynamics of Linear Elastic Bodies", Editura Academiei-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1975;
3. "Spinor and Non-Euclidean Tensor Calculus with Applications", Editura Tehnicã-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1983 (with I. Beju and E. Soos);
4. "Mechanical Systems", vol. I, II, Editura Tehnicã, Bucuresti, 1988.
: The 2nd European Conference of Solid Mechanics, September 1994, Genoa, Italy: Leader of a Section of the Conference and a Communication.
: Hannover, Dortmund, Paderborn, Germany, 1994; Padova, Pisa, Italy, 1994.
: Prize "Gh. Titeica" of the Romanian Academy in 1966; Member in the Advisory Board of Meccanica (Italy), Mechanics Research Communications and Letters in Applied Engineering Sciences (U.S.A.); Member of GAMM (Germany) and AMS (U.S.A.); Reviewer: Mathematical Reviews, Zentralblatt fuer Mathematik und ihre Grenzgebiete, Ph.D. advisor.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.