Thorson / Kristensen | Spatio-Temporal Models for Ecologists | Buch | 978-1-032-53101-4 | sack.de

Buch, Englisch, 294 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 726 g

Reihe: Chapman & Hall/CRC Applied Environmental Statistics

Thorson / Kristensen

Spatio-Temporal Models for Ecologists


1. Auflage 2024
ISBN: 978-1-032-53101-4
Verlag: CRC Press

Buch, Englisch, 294 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 726 g

Reihe: Chapman & Hall/CRC Applied Environmental Statistics

ISBN: 978-1-032-53101-4
Verlag: CRC Press


Ecological dynamics are tremendously complicated and are studied at a variety of spatial and temporal scales. Ecologists often simplify analysis by describing changes in density of individuals across a landscape, and statistical methods are advancing rapidly for studying spatio-temporal dynamics. However, spatio-temporal statistics is often presented using a set of principles that may seem very distant from ecological theory or practice. This book seeks to introduce a minimal set of principles and numerical techniques for spatio-temporal statistics that can be used to implement a wide range of real-world ecological analyses regarding animal movement, population dynamics, community composition, causal attribution, and spatial dynamics. We provide a step-by-step illustration of techniques that combine core spatial-analysis packages in R with low-level computation using Template Model Builder. Techniques are showcased using real-world data from varied ecological systems, providing a toolset for hierarchical modelling of spatio-temporal processes. Spatio-Temporal Models for Ecologists is meant for graduate level students, alongside applied and academic ecologists.

Key Features:

- Foundational ecological principles and analyses

- Thoughtful and thorough ecological examples

- Analyses conducted using a minimal toolbox and fast computation

- Code using R and TMB included in the book and available online

Thorson / Kristensen Spatio-Temporal Models for Ecologists jetzt bestellen!

Zielgruppe


Academic

Weitere Infos & Material


Part 1: Introductory  1. Statistical models for individual-based processes  2. Hierarchical models and Laplace approximation  Part 2: Basic  3. Population dynamics and state-space models  4. Individual movement  5. Spatial models  6. Spatial sampling designs and analysis  7. Covariates affecting densities and detectability  Part 3: Advanced  8. Spatio-temporal models with seasonal or multi-year dynamics  9. Ecological teleconnections  10. Population movement and habitat selection  11. Multispecies models for community diversity and biogeography  12. A decadal forecast for spatio-temporal models  A. Acknowledgements  B. Appendices


James Thorson is a statistical ecologist at the Alaska Fisheries Science Center within the National Marine Fisheries Service. His research interests include population dynamics, life-history theory, and methods for the sustainable management of natural resources. He has taught graduate-level courses in hierarchical modelling and spatio-temporal statistics at University of Washington.

Kasper Kristensen is a Senior Researcher at Danish Technical University. His research interests include spatio-temporal statistics and computational methods. He developed the R-package TMB, which is seeing increased use throughout ecology. For example, TMB is the computational backend for R-package glmmTMB, which has been cited over 3000 times from 2017-2022.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.