Todorcevic | Introduction to Ramsey Spaces | E-Book | sack.de
E-Book

E-Book, Englisch, Band 174, 296 Seiten

Reihe: Annals of Mathematics Studies

Todorcevic Introduction to Ramsey Spaces


Course Book
ISBN: 978-1-4008-3540-9
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 174, 296 Seiten

Reihe: Annals of Mathematics Studies

ISBN: 978-1-4008-3540-9
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Introduction to Ramsey Spaces".

Todorcevic Introduction to Ramsey Spaces jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction 1

Chapter 1. Ramsey Theory: Preliminaries 3

1.1 Coideals 3

1.2 Dimensions in Ramsey Theory 5

1.3 Higher Dimensions in Ramsey Theory 10

1.4 Ramsey Property and Baire Property 20

Chapter 2. Semigroup Colorings 27

2.1 Idempotents in Compact semigroups 27

2.2 The Galvin-Glazer Theorem 30

2.3 Gowers's Theorem 34

2.4 A Semigroup of Subsymmetric Ultrafilters 38

2.5 The Hales-Jewett Theorem 41

2.6 Partial Semigroup of Located Words 46

Chapter 3. Trees and Products 49

3.1 Versions of the Halpern-Lauchli Theorem 49

3.2 A Proof of the Halpern-Lauchli Theorem 55

3.3 Products of Finite Sets 57

Chapter 4. Abstract Ramsey Theory 63

4.1 Abstract Baire Property 63

4.2 The Abstract Ramsey Theorem 68

4.3 Combinatorial Forcing 76

4.4 The Hales-Jewett Space 83

4.5 Ramsey Spaces of Infinite Block Sequences of Located Words 89

Chapter 5. Topological Ramsey Theory 93

5.1 Topological Ramsey Spaces 93

5.2 Topological Ramsey Spaces of Infinite Block Sequences of Vectors 99

5.3 Topological Ramsey Spaces of Infinite Sequences of Variable Words 105

5.4 Parametrized Versions of Rosenthal Dichotomies 111

5.5 Ramsey Theory of Superperfect Subsets of Polish Spaces 117

5.6 Dual Ramsey Theory 121

5.7 A Ramsey Space of Infinite-Dimensional Vector Subspaces of FN 127

Chapter 6. Spaces of Trees 135

6.1 A Ramsey Space of Strong Subtrees 135

6.2 Applications of the Ramsey Space of Strong Subtrees 138

6.3 Partition Calculus on Finite Powers of the Countable Dense Linear Ordering 143

6.4 A Ramsey Space of Increasing Sequences of Rationals 149

6.5 Continuous Colorings on Q[k] 152

6.6 Some Perfect Set Theorems 158

6.7 Analytic Ideals and Points in Compact Sets of the First Baire Class 165

Chapter 7. Local Ramsey Theory 179

7.1 Local Ellentuck Theory 179

7.2 Topological Ultra-Ramsey Spaces 190

7.3 Some Examples of Selective Coideals on N 194

7.4 Some Applications of Ultra-Ramsey Theory 198

7.5 Local Ramsey Theory and Analytic Topologies on N 202

7.6 Ultra-Hales-Jewett Spaces 207

7.7 Ultra-Ramsey Spaces of Block Sequences of Located Words 212

7.8 Ultra-Ramsey Space of Infinite Block Sequences of Vectors 215

Chapter 8. Infinite Products of Finite Sets 219

8.1 Semicontinuous Colorings of Infinite Products of Finite Sets 219

8.2 Polarized Ramsey Property 224

8.3 Polarized Partition Calculus 231

Chapter 9. Parametrized Ramsey Theory 237

9.1 Higher Dimensional Ramsey Theorems

Parametrized by Infinite Products of Finite Sets 237

9.2 Combinatorial Forcing Parametrized by Infinite Products of Finite Sets 243

9.3 Parametrized Ramsey Property 248

9.4 Infinite-Dimensional Ramsey Theorem Parametrized by Infinite Products of Finite Sets 254

Appendix 259

Bibliography 271

Subject Index 279

Index of Notation 285


Stevo Todorcevic is professor of mathematics at the University of Toronto and holds senior research positions at the CNRS in Paris and SANU in Belgrade. He is the author or coauthor of several books, including Walks on Ordinals and Their Characteristics and Ramsey Methods in Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.