Buch, Englisch, 637 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1009 g
ISBN: 978-3-030-83204-9
Verlag: Springer International Publishing
This survey of computability theory offers the techniques and tools that computer scientists (as well as mathematicians and philosophers studying the mathematical foundations of computing) need to mathematically analyze computational processes and investigate the theoretical limitations of computing. Beginning with an introduction to the mathematisation of “mechanical process” using URM programs, this textbook explains basic theory such as primitive recursive functions and predicates and sequence-coding, partial recursive functions and predicates, and loop programs.
Advanced chapters cover the Ackerman function, Tarski’s theorem on the non-representability of truth, Goedel’s incompleteness and Rosser’s incompleteness theorems, two short proofs of the incompleteness theorem that are based on Lob's deliverability conditions, Church’s thesis, the second recursion theorem and applications, a provably recursive universal function for the primitive recursive functions, Oraclecomputations and various classes of computable functionals, the Arithmetical hierarchy, Turing reducibility and Turing degrees and the priority method, a thorough exposition of various versions of the first recursive theorem, Blum’s complexity, Hierarchies of primitive recursive functions, and a machine-independent characterisation of Cobham's feasibly computable functions.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Mathematical Background; a Review.- A Theory of Computability.- Primitive Recursive Functions.- Loop Programs.-The Ackermann Function.- (Un)Computability via Church's Thesis.- Semi-Recursiveness.- Yet another number-theoretic characterisation of P.- Godel's Incompleteness Theorem via the Halting Problem.- The Recursion Theorem.- A Universal (non-PR) Function for PR.- Enumerations of Recursive and Semi-Recursive Sets.- Creative and Productive Sets Completeness.- Relativised Computability.- POSSIBILITY: Complexity of P Functions.- Complexity of PR Functions.- Turing Machines and NP-Completeness.