Buch, Englisch, 269 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g
Buch, Englisch, 269 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g
Reihe: Springer Series in Reliability Engineering
ISBN: 978-3-030-83821-8
Verlag: Springer International Publishing
This book introduces the latest research on advanced control charts and new machine learning approaches to detect abnormalities in the smart manufacturing process. By approaching anomaly detection using both statistics and machine learning, the book promotes interdisciplinary cooperation between the research communities, to jointly develop new anomaly detection approaches that are more suitable for the 4.0 Industrial Revolution.
The book provides ready-to-use algorithms and parameter sheets, enabling readers to design advanced control charts and machine learning-based approaches for anomaly detection in manufacturing. Case studies are introduced in each chapter to help practitioners easily apply these tools to real-world manufacturing processes.
The book is of interest to researchers, industrial experts, and postgraduate students in the fields of industrial engineering, automation, statistical learning, and manufacturing industries.Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Ambient Intelligence, RFID, Internet der Dinge
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Produktionstechnik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Technik Allgemein Betriebswirtschaft für Ingenieure
Weitere Infos & Material
Anomaly Detection in Manufacturing.- EWMA Time-Between-Events-and-Amplitude Control Charts for Correlated Data.- An Adaptive Exponentially Weighted Moving Average Chart for the Ratio of Two Normal Variables.- On the Performance of CUSUM t Chart in the Presence of Measurement Errors.- The Effect of Autocorrelation on the Shewhart Control Chart for the Ratio of Two Normal Variables.- LSTM Autoencoder Control Chart for Multivariate Time Series Data.- Real-Time Production Monitoring Approach for Smart Manufacturing with Artificial Intelligence Techniques.- Anomaly Detection in Graph with Machine Learning.- Profile Control Charts Based on Support Vector Data Description.- An Anomaly Detection Approach Based on the Combination of LSTM Autoencoder and Isolation Forest for Multivariate Time Series Data.