Troy / Peletier | Spatial Patterns | Buch | 978-0-8176-4110-8 | sack.de

Buch, Englisch, Band 45, 343 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1520 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Troy / Peletier

Spatial Patterns

Higher Order Models in Physics and Mechanics
2001
ISBN: 978-0-8176-4110-8
Verlag: Birkhäuser Boston

Higher Order Models in Physics and Mechanics

Buch, Englisch, Band 45, 343 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1520 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-0-8176-4110-8
Verlag: Birkhäuser Boston


The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under­ standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.

Troy / Peletier Spatial Patterns jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Model equations.- 1.2 The Fisher–Kolmogorov equation.- 1.3 An overview.- 1.4 Methods.- 1.5 About the presentation.- 1.6 Bibliographical notes.- I The Symmetric Bistable Equation.- 2 Real Eigenvalues.- 3 Estimates.- 4 Periodic Solutions.- 5 Kinks and Pulses.- 6 Chaotic Solutions.- 7 Variational Problems.- II Related Equations.- 8 The Asymmetric Double-Well Potential.- 9 The Swift–Hohenberg Equation.- 10 Waves in Nonlinearly Supported Beams.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.