Buch, Englisch, 560 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 938 g
Buch, Englisch, 560 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 938 g
Reihe: International Series on Actuarial Science
ISBN: 978-1-009-31507-4
Verlag: Cambridge University Press
Actuaries must pass exams, but more than that: they must put knowledge into practice. This coherent book supports the Society of Actuaries' short-term actuarial mathematics syllabus while emphasizing the concepts and practical application of nonlife actuarial models. A class-tested textbook for undergraduate courses in actuarial science, it is also ideal for those approaching their professional exams. Key topics covered include loss modelling, risk and ruin theory, credibility theory and applications, and empirical implementation of loss models. Revised and updated to reflect curriculum changes, this second edition includes two brand new chapters on loss reserving and ratemaking. R replaces Excel as the computation tool used throughout – the featured R code is available on the book's webpage, as are lecture slides. Numerous examples and exercises are provided, with many questions adapted from past Society of Actuaries exams.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Versicherungswirtschaft
Weitere Infos & Material
Preface; Notation and convention; Part I. Loss Models: 1. Claim-frequency distribution; 2. Claim-severity distribution; 3. Aggregate-loss models; Part II. Risk and Ruin: 4. Risk measures; 5. Ruin theory; Part III. Credibility: 6. Classical credibility; 7. Bühlmann credibility; 8. Bayesian approach; 9. Empirical implementation of credibility; Part IV. Model Construction and Evaluation: 10. Model estimation and types of data; 11. Nonparametric model estimation; 12. Parametric model estimation; 13. Model evaluation and selection; 14. Basic Monte Carlo methods; 15. Applications of Monte Carlo methods; Part V. Loss reserving and ratemaking: 16. Loss reserving; 17. Ratemaking; Appendix: review of statistics; Answers to Exercises; References; Index.