Tucker / Höppner / Siebes | Advances in Intelligent Data Analysis XII | E-Book | sack.de
E-Book

E-Book, Englisch, 464 Seiten, eBook

Reihe: Information Systems and Applications, incl. Internet/Web, and HCI

Tucker / Höppner / Siebes Advances in Intelligent Data Analysis XII

12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, Proceedings
Erscheinungsjahr 2013
ISBN: 978-3-642-41398-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, Proceedings

E-Book, Englisch, 464 Seiten, eBook

Reihe: Information Systems and Applications, incl. Internet/Web, and HCI

ISBN: 978-3-642-41398-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed conference proceedings of the 12th International Conference on Intelligent Data Analysis, which was held in October 2013 in London, UK. The 36 revised full papers together with 3 invited papers were carefully reviewed and selected from 84 submissions handling all kinds of modeling and analysis methods, irrespective of discipline. The papers cover all aspects of intelligent data analysis, including papers on intelligent support for modeling and analyzing data from complex, dynamical systems.
Tucker / Höppner / Siebes Advances in Intelligent Data Analysis XII jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Data, Not Dogma: Big Data, Open Data, and the Opportunities Ahead.- Computational Techniques for Crop Disease Monitoring in the Developing World.- Subjective Interestingness in Exploratory Data Mining.- Time Point Estimation of a Single Sample from High Throughput Experiments Based on Time-Resolved Data and Robust Correlation Measures.- Detecting Events in Molecular Dynamics Simulations.- Graph Clustering by Maximizing Statistical Association Measures.- Evaluation of Association Rule Quality Measures through Feature Extraction.- Towards Comprehensive Concept Description Based on Association Rules.- CD-MOA: Change Detection Framework for Massive Online Analysis.- Integrating Multiple Studies of Wheat Microarray Data to Identify Treatment-Specific Regulatory Networks.- Finding Frequent Patterns in Parallel Point Processes.- Behavioral Clustering for Point Processes.- Estimating Prediction Certainty in Decision Trees.- Interactive Discovery of Interesting Subgroup Sets.- Gaussian Mixture Models for Time Series Modeling, Forecasting, and Interpolation.- When Does Active Learning Work.- Order Span: Mining Closed Partially Ordered Patterns.- Learning Multiple Temporal Matching for Time Series Classification.- On the Importance of Nonlinear Modeling in Computer Performance Prediction.- Diversity-Driven Widening.- Towards Indexing of Web3D Signing Avatars.- Variational Bayesian PCA versus
k
-NN on a Very Sparse Reddit Voting Dataset.- Analysis of Cluster Structure in Large-Scale English Wikipedia Category Networks.- 1d-SAX: A Novel Symbolic Representation for Time Series.- Learning Models of Activities Involving Interacting Objects.- Correcting the Usage of the Hoeffding Inequality in Stream Mining.- Exploratory Data Analysis through the Inspection of the Probability Density Function of the Number of Neighbors.- The Modeling of Glaucoma Progression through the Use of Cellular Automata.- Towards Narrative Ideation via Cross-Context Link Discovery Using BandedMatrices.- Gaussian Topographic Co-clustering Model.- Preventing Churn in Telecommunications: The Forgotten Network.- Computational Properties of Fiction Writing and Collaborative Work.- Classifier Evaluation with Missing Negative Class Labels.- Dynamic MMHC: A Local Search Algorithm for Dynamic Bayesian Network Structure Learning.- Accurate Visual Features for Automatic Tag Correction in Videos.- Ontology Database System and Triggers.- A Policy Iteration Algorithm for Learning from Preference-Based Feedback.- Multiclass Learning from Multiple Uncertain Annotations.- Learning Compositional Hierarchies of a Sensorimotor System.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.