Buch, Englisch, 384 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g
ISBN: 978-3-030-18547-3
Verlag: Springer International Publishing
This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras.
This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
Weitere Infos & Material
Introduction.- Part 1 Getting Started with Scientific Python.- Installation and Setup.- Numpy.- Matplotlib.- Ipython.- Jupyter Notebook.- Scipy.- Pandas.- Sympy.- Interfacing with Compiled Libraries.- Integrated Development Environments.- Quick Guide to Performance and Parallel Programming.- Other Resources.- Part 2 Probability.- Introduction.- Projection Methods.- Conditional Expectation as Projection.- Conditional Expectation and Mean Squared Error.- Worked Examples of Conditional Expectation and Mean Square Error Optimization.- Useful Distributions.- Information Entropy.- Moment Generating Functions.- Monte Carlo Sampling Methods.- Useful Inequalities.- Part 3 Statistics.- Python Modules for Statistics.- Types of Convergence.- Estimation Using Maximum Likelihood.- Hypothesis Testing and P-Values.- Confidence Intervals.- Linear Regression.- Maximum A-Posteriori.- Robust Statistics.- Bootstrapping.- Gauss Markov.- Nonparametric Methods.- Survival Analysis.- Part 4 Machine Learning.- Introduction.- Python Machine Learning Modules.- Theory of Learning.- Decision Trees.- Boosting Trees.- Logistic Regression.- Generalized Linear Models.- Regularization.- Support Vector Machines.- Dimensionality Reduction.- Clustering.- Ensemble Methods.- Deep Learning.- Notation.- References.- Index.