Vainos | Laser Growth and Processing of Photonic Devices | Buch | 978-1-84569-936-9 | sack.de

Buch, Englisch, 488 Seiten, Gewicht: 880 g

Vainos

Laser Growth and Processing of Photonic Devices


Erscheinungsjahr 2012
ISBN: 978-1-84569-936-9
Verlag: Woodhead Publishing

Buch, Englisch, 488 Seiten, Gewicht: 880 g

ISBN: 978-1-84569-936-9
Verlag: Woodhead Publishing


The use of lasers in the processing of electronic and photonic material is becoming increasingly widespread, with technological advances reducing costs and increasing both the quality and range of novel devices which can be produced. Laser growth and processing of photonic devices is the first book to review this increasingly important field.

Part one investigates laser-induced growth of materials and surface structures, with pulsed laser deposition techniques, the formation of nanocones and the fabrication of periodic photonic microstructures explored in detail. Laser-induced three-dimensional micro- and nano-structuring are the focus of part two. Exploration of multiphoton lithography, processing and fabrication is followed by consideration of laser-based micro- and nano-fabrication, laser-induced soft matter organization and microstructuring, and laser-assisted polymer joining methods. The book concludes in part three with an investigation into laser fabrication and manipulation of photonic structures and devices. Laser seeding and thermal processing of glass with nanoscale resolution, laser-induced refractive index manipulation, and the thermal writing of photonic devices in glass and polymers are all considered.

With its distinguished editor and international team of expert contributors, Laser growth and processing of photonic devices is an essential tool for all materials scientists, engineers and researchers in the microelectronics industry.
Vainos Laser Growth and Processing of Photonic Devices jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Contributor contact details

Dedication

Woodhead Publishing Series in Electronic and Optical Materials

Preface

Chapter 1: Laser growth and processing of photonic structures: an overview of fundamentals, interaction phenomena and operations

Abstract:

1.1 Laser processing concepts and processes: an introduction

1.2 Laser radiation, propagation and delivery

1.3 Summary of the interactions of laser radiation with condensed matter

1.4 Radiation absorption and energy transfer

1.5 Materials processing phenomena: appraisal of energy dependencies

1.6 Laser-based materials processing for photonics

1.7 Specific laser processing schemes for photonics applications

1.8 A suite of emerging concepts driving future trends

1.9 Acknowledgements

Part I: Laser-induced growth of materials and surface structures

Chapter 2: Emerging pulsed laser deposition techniques

Abstract:

2.1 Current state-of-the-art in pulsed laser deposition (PLD)

2.2 Problems for growth of thick films and designer refractive index profiles

2.3 Multi-beam PLD

2.4 Use of three different targets: combinatorial growth

2.5 Future work in complex PLD geometries

2.6 Conclusions

2.7 Acknowledgements

Chapter 3: The formation of nanocones on the surface of semiconductors by laser-induced self-assembly

Abstract:

3.1 Introduction

3.2 Experiments and discussion

3.3 Two-stage mechanism of nanocones formation in semiconductors

3.4 Applications in nanoelectronics and optoelectronics

3.5 Conclusions

3.6 Acknowledgements

Chapter 4: Fabrication of periodic photonic microstructures by the interference of ultrashort pulse laser beams

Abstract:

4.1 Review of periodic photonic devices induced by the interference of ultrashort pulse laser beams

4.2 Theoretical aspects of the interference of ultrashort pulse laser beams

4.3 Microstructures induced by the interference of two femtosecond laser beams

4.4 Microstructures induced by the interference of multiple femtosecond laser beams

4.5 Transfer of periodic microstructures by the interference of femtosecond laser beams

4.6 Conclusions and future trends

Part II: Laser-induced three-dimensional micro- and nano-structuring

Chapter 5: Multiphoton lithography, processing and fabrication of photonic structures

Abstract:

5.1 Introduction to multiphoton lithography

5.2 Principles of multiphoton absorption and lithography

5.3 Materials for multiphoton lithography

5.4 Applications of multiphoton lithography in photonics

5.5 Future prospects for multiphoton lithography in photonics

Chapter 6: Laser-based micro- and nano-fabrication of photonic structures

Abstract:

6.1 Introduction and motivation

6.2 Fabrication of 2D and 3D photonic micro-structures

6.3 Laser lithography for the fabrication of photonic structures

6.4 Laser lithography based on one-, two- or multiple-photon absorption

6.5 Material modification aspects

6.6 Device design, fabrication and applications

6.7 Conclusions and future trends

Chapter 7: Laser-induced soft matter organization and microstructuring of photonic materials

Abstract:

7.1 Introduction

7.2 The origin of radiation forces

7.3 Organization of entangled polymers and hybrids by laser radiation

7.4 Organization and microfabrication by radiation forces: an emerging technology

7.5 Conclusions and future prospects

7.6 Acknowledgments

7.8 Appendix

Chapter 8: Laser-assisted polymer joining methods for photonic devices

Abstract:

8.1 Introduction

8.2 Properties of benzocyclobutene (BCB) polymers for photonic applications

8.3 BCB as a planarization material for fabrication of semiconductor photonic devices

8.4 Laser-assisted polymer bonding for assembly of photonic and microelectromechanical systems (MEMS) devices

8.5 Laser microwelding for assembly of periodic photonic structures

8.6 Conclusions

Part III: Laser fabrication and manipulation of photonic structures and devices

Chapter 9: Laser seeding and thermal processing of glass with nanoscale resolution

Abstract:

9.1 Introduction

9.2 The regeneration process

9.3 Estimating the retention of nanoscale information in regenerated grating structures

9.4 Conclusions

9.5 Acknowledgements

Chapter 10: Femtosecond-laser-induced refractive index modifications for photonic device processing

Abstract:

10.1 Introduction

10.2 Ultrafast laser interactions with dielectric materials

10.3 Refractive index modification mechanisms

10.4 Photonic device processing

10.5 Photonic devices

10.6 Conclusions

Chapter 11: Thermal writing of photonic devices in glass and polymers by femtosecond lasers

Abstract:

11.1 Introduction

11.2 Femtosecond laser-material interaction in waveguide writing

11.3 Femtosecond laser waveguide writing in glasses

11.4 Waveguide writing in polymers

11.5 Conclusions

11.6 Future trends

Chapter 12: Laser processing of optical fibers: new photosensitivity findings, refractive index engineering and surface structuring

Abstract:

12.1 Introduction and historical overview

12.2 Glass photosensitivity using laser beams

12.3 Correlation of underlying photosensitivity mechanisms with refractive index changes

12.4 Types of photosensitivity in optical fibers

12.5 Grating fabrication in standard, germanosilicate optical fibers

12.6 Grating fabrication in standard, all-silica optical fibers

12.7 Grating fabrication in phosphate and fluoride glass fibers

12.8 Microstructured optical fiber (MOF) gratings

12.9 Laser machining of optical fibers

12.10 Future trends and prospects

12.11 Conclusions

12.12 Acknowledgments

Index


Vainos, Nikolaos A
Nikolaos A. Vainos is Professor and Deputy Chair of the Department of Materials Science at the University of Patras, Greece. The scientific coordinator of over 40 research projects, he has written extensively on optical properties and laser applications.

Nikolaos A. Vainos is Professor and Deputy Chair of the Department of Materials Science at the University of Patras, Greece. The scientific coordinator of over 40 research projects, he has written extensively on optical properties and laser applications.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.