E-Book, Englisch, Band 4, 311 Seiten
Vakulenko Complexity and Evolution of Dissipative Systems
1. Auflage 2013
ISBN: 978-3-11-026828-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
An Analytical Approach
E-Book, Englisch, Band 4, 311 Seiten
Reihe: De Gruyter Series in Mathematics and Life Sciences
ISBN: 978-3-11-026828-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Specialists in mathematical biology, mathematical physics, bioinformatics; Academic libraries
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biophysik
- Naturwissenschaften Physik Angewandte Physik Biophysik
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
Complexity and evolution of spatially extended systems: analytical approach Chapter 1: Introduction - Dynamical systems - Attractors - Strange attractors - Neural and genetic networks - Reaction diffusion systems - Systems with random perturbations and Gromov-Carbone problem
Chapter 2: Method to control dynamics: Invariant manifolds, realization of vector fields - Invariant manifolds - Method of realization of vector fields - Control of attractor and inertial dynamics for neural networks
Chapter 3: Complexity of patterns and attractors in genetic networks Centralized networks and attractor complexity in such network - A connection with computational problems, Turing machines and finite automatons - Graph theory, graph growth and computational power of neural and genetical networks - Mathematical model that shows how positional information can be transformed into body plan of multicellular organism - Applications to TF- microRNA networks. Bifurcation complexity in networks
Chapter 4: Viability problem, Robustness under noise and evolution - Here we consider neural and genetic networks under large random perturbations - Viability problem - We show that network should evolve to be viable, and network complexity should increase - A connection with graph growth theory (Erdos-Renyi, Albert-Barabasi) - Relation between robustness, attractor complexity and functioning speed - Why Stalin and Putin's empires fall (as a simple illustration) - The Kolmogorov complexity of multicellular organisms and genetic codes: nontrivial connections - Robustness of multicellular organisms (Drosophila as an example) - A connection with the Hopfield system
Chapter 5: Complexity of attractors for reaction diffusion systems and systems with convection - Existence of chemical waves with complex fronts - Existence of complicated attractors for reaction diffusion systems - Applications to Ginzburg Landau systems and natural computing - Existence of complicated attractors for Navier Stokes equations