Valcan / Pelea / Calugareanu | Exercises in Abelian Group Theory | Buch | 978-1-4020-1183-2 | sack.de

Buch, Englisch, 351 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1530 g

Reihe: Texts in the Mathematical Sciences

Valcan / Pelea / Calugareanu

Exercises in Abelian Group Theory


2003
ISBN: 978-1-4020-1183-2
Verlag: Springer Netherlands

Buch, Englisch, 351 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1530 g

Reihe: Texts in the Mathematical Sciences

ISBN: 978-1-4020-1183-2
Verlag: Springer Netherlands


This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science,'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992,these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap.

Valcan / Pelea / Calugareanu Exercises in Abelian Group Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Basic notions.- 2 Divisible groups.- 3 Pure subgroups.- 4 Topological groups.- 5 Algebraically compact groups.- 6 Homological methods.- 7 p-groups.- 8 Torsion-free groups.- 9 Mixed groups.- 10 Subgroup lattices of groups.- 1 Basic notions.- 2 Divisible groups.- 3 Pure subgroups.- 4 Topological groups.- 5 Algebraically comact groups.- 6 Homological methods.- 7 p-groups.- 8 Torsion-free groups.- 9 Mixed groups.- 10 Subgroup lattices of groups.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.