van Frankenhuysen / Lapidus | Fractal Geometry and Number Theory | Buch | 978-0-8176-4098-9 | sack.de

Buch, Englisch, 268 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1270 g

van Frankenhuysen / Lapidus

Fractal Geometry and Number Theory

Complex Dimensions of Fractal Strings and Zeros of Zeta Functions
1999
ISBN: 978-0-8176-4098-9
Verlag: Birkhäuser Boston

Complex Dimensions of Fractal Strings and Zeros of Zeta Functions

Buch, Englisch, 268 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1270 g

ISBN: 978-0-8176-4098-9
Verlag: Birkhäuser Boston


A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo­ metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di­ mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref­ erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap­ pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of. c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex­ tension. The central notion of this book, the complex dimensions of a fractal string. c, is defined as the poles of the meromorphic extension of (c.

van Frankenhuysen / Lapidus Fractal Geometry and Number Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Complex Dimensions of Ordinary Fractal Strings.- 1.1 The Geometry of a Fractal String.- 1.2 The Geometric Zeta Function of a Fractal String.- 1.3 The Frequencies of a Fractal String and the Spectral Zeta Function.- 1.4 Higher-Dimensional Analogue: Fractal Sprays.- 2 Complex Dimensions of Self-Similar Fractal Strings.- 2.1 The Geometric Zeta Function of a Self-Similar String.- 2.2 Examples of Complex Dimensions of Self-Similar Strings.- 2.3 The Lattice and Nonlattice Case.- 2.4 The Structure of the Complex Dimensions.- 2.5 The Density of the Poles in the Nonlattice Case.- 2.6 Approximating a Fractal String and Its Complex Dimensions.- 3 Generalized Fractal Strings Viewed as Measures.- 3.1 Generalized Fractal Strings.- 3.2 The Frequencies of a Generalized Fractal String.- 3.3 Generalized Fractal Sprays.- 3.4 The Measure of a Self-Similar String.- 4 Explicit Formulas for Generalized Fractal Strings.- 4.1 Introduction.- 4.2 Preliminaries: The Heaviside Function.- 4.3 The Pointwise Explicit Formulas.- 4.4 The Distributional Explicit Formulas.- 4.5 Example: The Prime Number Theorem.- 5 The Geometry and the Spectrum of Fractal Strings.- 5.1 The Local Terms in the Explicit Formulas.- 5.2 Explicit Formulas for Lengths and Frequencies.- 5.3 The Direct Spectral Problem for Fractal Strings.- 5.4 Self-Similar Strings.- 5.5 Examples of Non-Self-Similar Strings.- 5.6 Fractal Sprays.- 6 Tubular Neighborhoods and Minkowski Measurability.- 6.1 Explicit Formula for the Volume of a Tubular Neighborhood.- 6.2 Minkowski Measurability and Complex Dimensions.- 6.3 Examples.- 7 The Riemann Hypothesis, Inverse Spectral Problems and Oscillatory Phenomena.- 7.1 The Inverse Spectral Problem.- 7.2 Complex Dimensions of Fractal Strings and the Riemann Hypothesis.- 7.3 Fractal Sprays and the Generalized Riemann Hypothesis.- 8 Generalized Cantor Strings and their Oscillations.- 8.1 The Geometry of a Generalized Cantor String.- 8.2 The Spectrum of a Generalized Cantor String.- 9 The Critical Zeros of Zeta Functions.- 9.1 The Riemann Zeta Function: No Critical Zeros in an Arithmetic Progression.- 9.2 Extension to Other Zeta Functions.- 9.3 Extension to L-Series.- 9.4 Zeta Functions of Curves Over Finite Fields.- 10 Concluding Comments.- 10.1 Conjectures about Zeros of Dirichlet Series.- 10.2 A New Definition of Fractality.- 10.3 Fractality and Self-Similarity.- 10.4 The Spectrum of a Fractal Drum.- 10.5 The Complex Dimensions as Geometric Invariants.- Appendices.- A Zeta Functions in Number Theory.- A.l The Dedekind Zeta Function.- A.3 Completion of L-Series, Functional Equation.- A.4 Epstein Zeta Functions.- A.5 Other Zeta Functions in Number Theory.- B Zeta Functions of Laplacians and Spectral Asymptotics.- B.l Weyl’s Asymptotic Formula.- B.2 Heat Asymptotic Expansion.- B.3 The Spectral Zeta Function and Its Poles.- B.4 Extensions.- B.4.1 Monotonic Second Term.- References.- Conventions.- Symbol Index.- List of Figures.- Acknowledgements.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.