Buch, Englisch, 370 Seiten, Format (B × H): 125 mm x 176 mm, Gewicht: 1600 g
Reihe: Mathematics
Buch, Englisch, 370 Seiten, Format (B × H): 125 mm x 176 mm, Gewicht: 1600 g
Reihe: Mathematics
ISBN: 978-1-85233-223-5
Verlag: Springer
This text is a self-contained, comprehensive treatment of the tensor and spinor calculus of space-time manifolds with as few technicalities as correct treatment allows. Both the physical and geometrical motivation of all concepts are discussed, helping the reader to go through the technical details in a confident manner. Several physical theories are discussed and developed beyond standard treatment using results in the book. Both the traditional "index" and modern "coordinate-free" notations are used side-by-side in the book, making it accessible to beginner graduate students in mathematics and physics. The methods developed offer new insights into standard areas of physics, such as classical mechanics or electromagnetism, and takes readers to the frontiers of knowledge of spinor calculus.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Geometrie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
Weitere Infos & Material
Preface.- Part I Preliminaries and Algebraic Aspects ofSpinors: General Vector Spaces. Vector Spaces with a Metric.- Part II Preliminaries and Geometrical Aspects of Spinors: Manifolds in General. Lie Groups as Special Manifolds. Fibre Bundles as Special Manifolds.- Part III General SpinorialDifferentiation: Geometrical Definition of C31 (R) Spinors. Differentiation of Spinor Fields. Interplay between Differentiations. The Invariant Formalism.- Part IV Illustrations and Applications: Newtonian Mechanics and C30 (R). Electro-Magnetism. Cartan Formalism. Geometrical Gravitational Theories.- A: Infeld-van der Waerden Symbols.- B: Maxwells's Equations: Complements.