Buch, Englisch, 472 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1880 g
Buch, Englisch, 472 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1880 g
Reihe: Springer Series in Computational Mathematics
ISBN: 978-3-540-03440-7
Verlag: Springer Berlin Heidelberg
This book describes numerical methods for partial differential equations (PDEs) coupling advection, diffusion and reaction terms, encompassing methods for hyperbolic, parabolic and stiff and nonstiff ordinary differential equations (ODEs). The emphasis is on time-dependent transport-chemistry problems. Many of the theoretical aspects are illustrated by numerical experiments on models from biology, chemistry and physics. A unified approach is followed by emphasizing the method of lines or semi-discretization. This book treats integration methods suitable for both classes of problems and thus is of interest to PDE researchers unfamiliar with advanced numerical ODE methods, as well as to ODE researchers unaware of the vast amount of interesting results on numerical PDEs.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Chemie Physikalische Chemie Quantenchemie, Theoretische Chemie
Weitere Infos & Material
I Basic Concepts and Discretizations.- II Time Integration Methods.- III Advection-Diffusion Discretizations.- IV Splitting Methods.- V Stabilized Explicit Runge-Kutta Methods.