Buch, Englisch, Band 170, 227 Seiten, Paperback, Format (B × H): 148 mm x 210 mm, Gewicht: 341 g
Reihe: AutoUni – Schriftenreihe
Buch, Englisch, Band 170, 227 Seiten, Paperback, Format (B × H): 148 mm x 210 mm, Gewicht: 341 g
Reihe: AutoUni – Schriftenreihe
ISBN: 978-3-658-43187-7
Verlag: Springer
Given the limitations of state-of-the-art methods, this book presents a state of health (SOH) forecasting method that is suitable for lithium-ion battery (LIB) systems in real-world battery electric vehicle operation. Its histogram-based features can capture the higher operational variability compared to constant and controlled laboratory operation. Also, the transferability of a trained machine learning model to new LIB cell types and new operational domains is investigated. The presented SOH forecasting method can be provided as a cloud service via a web or smartphone app to fleet managers. Forecasting the SOH enables fleet managers of battery electric vehicle fleets to forecast and plan vehicle replacements.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verkehrstechnik | Transportgewerbe Fahrzeugtechnik
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Fertigungsindustrie Automobilindustrie
- Technische Wissenschaften Energietechnik | Elektrotechnik Energietechnik & Elektrotechnik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
Weitere Infos & Material
Towards State of Health Forecasting of Lithium-Ion Batteries.- Structure Literature Survey of Related Work.- Battery Cell State of Health Forecasting.- Transfer of Battery Cell State of Health Forecasting.- Battery System State of Health Forecasting.- Concept for a Technical Implementation.