E-Book, Englisch, 165 Seiten
Wadoo / Kachroo Autonomous Underwater Vehicles
Erscheinungsjahr 2017
ISBN: 978-1-4398-1832-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Modeling, Control Design and Simulation
E-Book, Englisch, 165 Seiten
ISBN: 978-1-4398-1832-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate.
Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design.
Includes MATLAB® Simulations to Illustrate Concepts and Enhance Understanding
Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the book’s detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle design—to stabilize and make the vehicle follow a trajectory precisely.
Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.
Zielgruppe
Researchers and students in intelligent control of AUVs, advanced control strategists and designers for AUVs; those working with dynamics of control, mechanical design; fluid mechanics, and ocean engineering.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction
Overview
Examples of Underwater Vehicles Construction
Vehicle Kinematics Fundamentals
Lie Groups and Lie Algebras
Problem Formulation and Examples
Motion Planning of Nonholonomic Systems
Nonholonomic Constraints
Problem Description
Control Model Formulation
Controllability Issues
Stabilization
Examples of Nonholonomic Systems
Mathematical Modeling and Controllability Analysis
Mathematical Modeling
Controllability Analysis
Chained Forms
Control Design Using the Kinematic Model
Trajectory Tracking and Controller Design for the Chained Form
Reference Trajectory Generation
Control Using Approximate Linearization
Control Using Exact Feedback Linearization via State and Input Transformations
Point-to-Point Stabilization
Control Design Using the Dynamic Model
Dynamic Modeling
Point-to-Point Stabilization Control Design
Robust Feedback Control Design
Robust Control Using the Kinematic Model
Robust Control Using the Dynamic Model