Buch, Englisch, 756 Seiten, HC gerader Rücken kaschiert, Format (B × H): 175 mm x 250 mm, Gewicht: 1360 g
Buch, Englisch, 756 Seiten, HC gerader Rücken kaschiert, Format (B × H): 175 mm x 250 mm, Gewicht: 1360 g
ISBN: 978-1-108-49710-7
Verlag: Cambridge University Press
This graduate text is indispensable for those wanting to see and understand the mechanics of extreme dynamic events. It describes in detail the mechanics and material models used in understanding impact and penetration events. Covers continuum mechanics, the Hugoniot jump conditions, plasticity theory, damage and failure theory, shock and wave propagation in both Eulerian and Lagrangian frameworks, and the high pressure and high-rate response of materials. Nonlinearity in response of materials and systems is a common theme, showing itself in interesting and surprising ways. Materials are studied through damage to failure, since in armor and protection applications materials are utilized all the way through failure. Continuum and constitutive modelling topics required for modern large-scale numerical simulation techniques are clearly described. Extensive exercises ensure comprehension and explore new topics. This text is appropriate for a variety of graduate courses, including Continuum Mechanics, Advanced Solid Mechanics, and Plasticity and Inelasticity Theory.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Technik: Allgemeines
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Naturwissenschaften Physik Mechanik Akustik, Schwingungsanalyse
- Rechtswissenschaften Öffentliches Recht Umweltrecht Naturschutz-, Landschafts-, Tierschutz- und Seerecht
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
Weitere Infos & Material
1. Introduction; 2. Conservation laws and the Hugoniot jump conditions; 3. The behavior of solids; 4. Mechanical waves, shocks, and rarefactions; 5. Elastic-plastic deformation and shocks; 6. The cavity expansion; 7. Penetration; 8. The Tate-Alekseevskii model; 9. The crater and ejecta; 10. The Walker-Anderson model; 11. Finite targets; 12. Nondeforming (rigid) impactors; 13. Yarns, fabrics, and fiber-based composites; 14. Rotation, stretch, and finite elasticity