E-Book, Englisch, 384 Seiten
Reihe: Chapman & Hall/CRC Monographs on Statistics & Applied Probability
Wang Smoothing Splines
Erscheinungsjahr 2011
ISBN: 978-1-4200-7756-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Methods and Applications
E-Book, Englisch, 384 Seiten
Reihe: Chapman & Hall/CRC Monographs on Statistics & Applied Probability
ISBN: 978-1-4200-7756-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference.
The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models.
Smoothing Splines offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book’s web page.
Zielgruppe
Researchers, practitioners, and graduate students in statistics and biostatistics; researchers in nonparametric regression, machine learning, and numerical analysis.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Naturwissenschaften, Technik, Medizin
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
Introduction
Parametric and Nonparametric Regression
Polynomial Splines
Scope of This Book
The assist Package
Smoothing Spline Regression
Reproducing Kernel Hilbert Space
Model Space for Polynomial Splines
General Smoothing Spline Regression Models
Penalized Least Squares Estimation
The ssr Function
Another Construction for Polynomial Splines
Periodic Splines
Thin-Plate Splines
Spherical Splines
Partial Splines
L-Splines
Smoothing Parameter Selection and Inference
Impact of the Smoothing Parameter
Trade-Offs
Unbiased Risk
Cross-Validation and Generalized Cross-Validation
Bayes and Linear Mixed-Effects Models
Generalized Maximum Likelihood
Comparison and Implementation
Confidence Intervals
Hypothesis Tests
Smoothing Spline ANOVA
Multiple Regression
Tensor Product Reproducing Kernel Hilbert Spaces
One-Way SS ANOVA Decomposition
Two-Way SS ANOVA Decomposition
General SS ANOVA Decomposition
SS ANOVA Models and Estimation
Selection of Smoothing Parameters
Confidence Intervals
Examples
Spline Smoothing with Heteroscedastic and/or Correlated Errors
Problems with Heteroscedasticity and Correlation
Extended SS ANOVA Models
Variance and Correlation Structures
Examples
Generalized Smoothing Spline ANOVA
Generalized SS ANOVA Models
Estimation and Inference
Wisconsin Epidemiological Study of Diabetic Retinopathy
Smoothing Spline Estimation of Variance Functions
Smoothing Spline Spectral Analysis
Smoothing Spline Nonlinear Regression
Motivation
Nonparametric Nonlinear Regression Models
Estimation with a Single Function
Estimation with Multiple Functions
The nnr Function
Examples
Semiparametric Regression
Motivation
Semiparametric Linear Regression Models
Semiparametric Nonlinear Regression Models
Examples
Semiparametric Mixed-Effects Models
Linear Mixed-Effects Models
Semiparametric Linear Mixed-Effects Models
Semiparametric Nonlinear Mixed-Effects Models
Examples
Appendix A: Data Sets
Appendix B: Codes for Fitting Strictly Increasing Functions
Appendix C: Codes for Term Structure of Interest Rates
References
Author Index
Subject Index