Werner | Numerische Mathematik | Buch | 978-3-528-07233-9 | sack.de

Buch, Deutsch, Band 33, 280 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 508 g

Reihe: vieweg studium; Aufbaukurs Mathematik

Werner

Numerische Mathematik

Eigenwertaufgaben, lineare Optimierungsaufgaben, unrestringierte Optimierungsaufgaben
1992
ISBN: 978-3-528-07233-9
Verlag: Vieweg+Teubner Verlag

Eigenwertaufgaben, lineare Optimierungsaufgaben, unrestringierte Optimierungsaufgaben

Buch, Deutsch, Band 33, 280 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 508 g

Reihe: vieweg studium; Aufbaukurs Mathematik

ISBN: 978-3-528-07233-9
Verlag: Vieweg+Teubner Verlag


Dieser Band setzt die "Numerische Mathematik 1" fort. Er enthält Kapitel über Eigenwertaufgaben, lineare Optimierungsaufgaben unrestringierte Optimierungsaufgaben.

Werner Numerische Mathematik jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


5 Eigenwertaufgaben.- 5.1 Einige theoretische Grundlagen.- Aufgaben.- 5.2 Das QR-Verfahren.- Aufgaben.- 5.3 Eigenwertaufgaben für symmetrische Matrizen.- Aufgaben.- 6 Lineare Optimierungsaufgaben.- 6.1 Einführung, Beispiele.- Aufgaben.- 6.2 Das Simplexverfahren.- Aufgaben.- 6.3 Dualität bei linearen Programmen.- Aufgaben.- 6.4 Das Karmarkar-Verfahren.- Aufgaben.- 7 Unrestringierte Optimierungsaufgaben.- 7.1 Grundlagen.- Aufgaben.- 7.2 Ein Modellalgorithmus.- Aufgaben.- 7.3 Quasi-Newton-Verfahren.- Aufgaben.- 7.4 Verfahren der konjugierten Gradienten.- Aufgaben.- 7.5 Trust-Region-Verfahren.- Aufgaben.


Dr. Jochen Werner ist Professor am Institut für NumerischeMathematik der Georg-August-Universität in Göttingen.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.