Buch, Englisch, 614 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1940 g
7th Pacific-Asia Conference, PAKDD 2003. Seoul, Korea, April 30 - May 2, 2003, Proceedings
Buch, Englisch, 614 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1940 g
Reihe: Lecture Notes in Artificial Intelligence
ISBN: 978-3-540-04760-5
Verlag: Springer Berlin Heidelberg
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Business Application Unternehmenssoftware SAP
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Technische Informatik Systemverwaltung & Management
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Mathematik | Informatik EDV | Informatik Informatik
Weitere Infos & Material
Industrial Papers (Invited).- Data Mining as an Automated Service.- Trends and Challenges in the Industrial Applications of KDD.- Stream Mining I.- Finding Event-Oriented Patterns in Long Temporal Sequences.- Mining Frequent Episodes for Relating Financial Events and Stock Trends.- Graph Mining.- An Efficient Algorithm of Frequent Connected Subgraph Extraction.- Classifier Construction by Graph-Based Induction for Graph-Structured Data.- Clustering I.- Comparison of the Performance of Center-Based Clustering Algorithms.- Automatic Extraction of Clusters from Hierarchical Clustering Representations.- Text Mining.- Large Scale Unstructured Document Classification Using Unlabeled Data and Syntactic Information.- Extracting Shared Topics of Multiple Documents.- An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition.- A Semi-supervised Algorithm for Pattern Discovery in Information Extraction from Textual Data.- Bio Mining.- Mining Patterns of Dyspepsia Symptoms Across Time Points Using Constraint Association Rules.- Predicting Protein Structural Class from Closed Protein Sequences.- Learning Rules to Extract Protein Interactions from Biomedical Text.- Predicting Protein Interactions in Human by Homologous Interactions in Yeast.- Web Mining.- Mining the Customer’s Up-To-Moment Preferences for E-commerce Recommendation.- A Graph-Based Optimization Algorithm for Website Topology Using Interesting Association Rules.- A Markovian Approach for Web User Profiling and Clustering.- Extracting User Interests from Bookmarks on the Web.- Stream Mining II.- Mining Frequent Instances on Workflows.- Real Time Video Data Mining for Surveillance Video Streams.- Distinguishing Causal and Acausal Temporal Relations.- Bayesian Networks.- OnlineBayes Point Machines.- Exploiting Hierarchical Domain Values for Bayesian Learning.- A New Restricted Bayesian Network Classifier.- Clustering II.- AGRID: An Efficient Algorithm for Clustering Large High-Dimensional Datasets.- Multi-level Clustering and Reasoning about Its Clusters Using Region Connection Calculus.- An Efficient Cell-Based Clustering Method for Handling Large, High-Dimensional Data.- Association Rules I.- Enhancing SWF for Incremental Association Mining by Itemset Maintenance.- Reducing Rule Covers with Deterministic Error Bounds.- Evolutionary Approach for Mining Association Rules on Dynamic Databases.- Semi-structured Data Mining.- Position Coded Pre-order Linked WAP-Tree for Web Log Sequential Pattern Mining.- An Integrated System of Mining HTML Texts and Filtering Structured Documents.- A New Sequential Mining Approach to XML Document Similarity Computation.- Classification I.- Optimization of Fuzzy Rules for Classification Using Genetic Algorithm.- Fast Pattern Selection for Support Vector Classifiers.- Averaged Boosting: A Noise-Robust Ensemble Method.- Improving Performance of Decision Tree Algorithms with Multi-edited Nearest Neighbor Rule.- Data Analysis.- HOT: Hypergraph-Based Outlier Test for Categorical Data.- A Method for Aggregating Partitions, Applications in K.D.D.- Efficiently Computing Iceberg Cubes with Complex Constraints through Bounding.- Extraction of Tag Tree Patterns with Contractible Variables from Irregular Semistructured Data.- Association Rules II.- Step-by-Step Regression: A More Efficient Alternative for Polynomial Multiple Linear Regression in Stream Cube.- Progressive Weighted Miner: An Efficient Method for Time-Constraint Mining.- Mining Open Source Software (OSS) Data Using Association Rules Network.- Parallel FP-Growth on PC Cluster.- Feature Selection.- Active Feature Selection Using Classes.- Electricity Based External Similarity of Categorical Attributes.- Weighted Proportional k-Interval Discretization for Naive-Bayes Classifiers.- Dealing with Relative Similarity in Clustering: An Indiscernibility Based Approach.- Stream Mining III.- Considering Correlation between Variables to Improve Spatiotemporal Forecasting.- Correlation Analysis of Spatial Time Series Datasets: A Filter-and-Refine Approach.- When to Update the Sequential Patterns of Stream Data?.- Clustering III.- A New Clustering Algorithm for Transaction Data via Caucus.- DBRS: A Density-Based Spatial Clustering Method with Random Sampling.- Optimized Clustering for Anomaly Intrusion Detection.- Classification II.- Finding Frequent Subgraphs from Graph Structured Data with Geometric Information and Its Application to Lossless Compression.- Upgrading ILP Rules to First-Order Bayesian Networks.- A Clustering Validity Assessment Index.