Buch, Deutsch, 635 Seiten, Paperback, Format (B × H): 168 mm x 240 mm, Gewicht: 1070 g
Reihe: Springer-Lehrbuch
Mengentheoretische, algebraische, topologische Grundlagen sowie reelle und komplexe Zahlen
Buch, Deutsch, 635 Seiten, Paperback, Format (B × H): 168 mm x 240 mm, Gewicht: 1070 g
Reihe: Springer-Lehrbuch
ISBN: 978-3-662-54215-6
Verlag: Springer
Dieses Buch vermittelt wesentliche Grundlagen der Mathematik, und zwar aus der Mengenlehre, der Algebra, der Theorie der reellen und komplexen Zahlen sowie der Topologie. Es ist damit die Basis für eine weiterführende Beschäftigung mit der Mathematik. Nicht nur die nötigen Begriffe werden eingeführt, sondern bereits wesentliche – auch tieferliegende – Aussagen darüber bewiesen. Der Stoff wird durch ungewöhnliche Beispiele und vielfältige Aufgaben illustriert und ergänzt. Das Buch ist zum Selbststudium geeignet, aber vor allem konzipiert als Begleitlektüre von Anfang an für ein Studium der Mathematik, Physik und Informatik. Die stringente Herangehensweise macht es gut lesbar und vergleichsweise leicht verständlich.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
Vorwort.- Einleitung.- Symbolverzeichnis.- Grundlagen der Mengenlehre.- Algebraische Grundlagen.- Reelle und komplexe Zahlen.- Topologische Grundlagen.- Sachverzeichnis.- Literaturverzeichnis.