Buch, Englisch, Band 2, 301 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1380 g
Buch, Englisch, Band 2, 301 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1380 g
Reihe: Interdisciplinary Applied Mathematics
ISBN: 978-0-387-97522-1
Verlag: Springer
Provides a new and more realistic framework for describing the dynamics of non-linear systems. A number of issues arising in applied dynamical systems from the viewpoint of problems of phase space transport are raised in this monograph. Illustrating phase space transport problems arising in a variety of applications that can be modeled as time-periodic perturbations of planar Hamiltonian systems, the book begins with the study of transport in the associated two-dimensional Poincaré Map. This serves as a starting point for the further motivation of the transport issues through the development of ideas in a non-perturbative framework with generalizations to higher dimensions as well as more general time dependence. A timely and important contribution to those concerned with the applications of mathematics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
Weitere Infos & Material
1 Introduction and Examples.- 2 Transport in Two-Dimensional Maps: General Principles and Results.- 3 Convective Mixing and Transport Problems in Fluid Mechanics.- 4 Transport in Quasiperiodically Forced Systems: Dynamics Generated by Sequences of Maps.- 5 Markov Models.- 6 Transport in k-Degree-of-Freedom Hamiltonian Systems, 3 ? k < ?: The Generalization of Separatrices to Higher Dimensions and Their Geometrical Structure.- Appendix 1 Proofs of Theorems 2.6 and 2.12.- Appendix 2 Derivation of the Quasiperiodic Melnikov Functions from Chapter 4.- References.