Wolff-Fabris / Altstädt / Arnold | Electron Beam Curing of Composites | E-Book | sack.de
E-Book

E-Book, Deutsch, 136 Seiten

Wolff-Fabris / Altstädt / Arnold Electron Beam Curing of Composites


1. Auflage 2012
ISBN: 978-3-446-43346-5
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Deutsch, 136 Seiten

ISBN: 978-3-446-43346-5
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Electron beam curing technology for advanced composites has emerged as a credible and attractive alternative to thermal curing for most composite products. Technical advantages, e.g., for aerospace structures, include curing at room temperature, using low-cost tooling, and the ability to fabricate large integrated structures.Here, both theoretical and practical aspects of electron beam curing of composites are comprehensively covered, with the intention to bridge the gap between academic knowledge and Industrial applications. The reader is introduced to fundamental information regarding curing reactions, to material requirements and parameters affecting EB curing, and the analysis of current molding technologies combined with EB curing. A description of research projects and the main topics they address as well as examples of EB curing applications within the composite industry are also presented.

Wolff-Fabris / Altstädt / Arnold Electron Beam Curing of Composites jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;1Introduction to Electron Beam Curing of Composites;8
2.1;1.1Principles of the Technique;8
2.2;1.2Chemical Aspects of the Curing Reaction;9
2.2.1;1.2.1Free Radical Polymerization;10
2.2.2;1.2.2Cationic Polymerization;11
2.2.3;1.2.3Network Formation;13
2.3;1.3Parameters Affecting Electron Beam Curing;14
2.3.1;1.3.1Impurities;14
2.3.2;1.3.2Irradiation Dose;15
2.3.3;1.3.3Initiator Content;16
2.3.4;1.3.4Thermal history;16
2.3.5;1.3.5Irradiation Energy;18
2.4;1.4Electron Beam Curing Facilities;20
2.5;1.5Safety Issues;22
3;2Aspects of Electron Beam Curable Materials;24
3.1;2.1Initiators;24
3.1.1;2.1.1Onium Salt Initiators;27
3.1.1.1;2.1.1.1Iodonium Salt Initiators;27
3.1.1.2;2.1.1.2Sulfonium Salt Initiators;33
3.1.1.3;2.1.1.3Other Onium Salt Initiators and Related Compounds;41
3.1.2;2.1.2Metal Complex Initiators;44
3.1.2.1;2.1.2.1Cyclopentadienyl Iron(II) Arene Complex Initiators;44
3.1.2.2;2.1.2.2Silver Alkene Complex Initiators;46
3.2;2.2Neat Resins;48
3.2.1;2.2.1Free Radical Polymerizable Resins;48
3.2.2;2.2.2Cationically Polymerizable Resins;50
3.3;2.3Toughened Resins;52
3.3.1;2.3.1Liquid Reactive Rubber;54
3.3.2;2.3.2Core-Shell Rubber Particles;55
3.3.3;2.3.3Thermoplastics;63
3.3.4;2.3.4Block Co-polymers;74
3.3.5;2.3.5Inorganic Nanoparticles;79
3.3.6;2.3.6Hyperbranched Polymers;83
3.4;2.4Interfacial Properties Between Fibers and Matrix;84
3.4.1;2.4.1Fiber Surface Treatment and Use of Sizings;85
3.4.2;2.4.2Processing Conditions;86
3.5;2.5Residual Stresses;87
3.6;2.6Effect of Post-Curing;88
4;3Electron Beam Curing Applied to Composite Molding Technologies;92
4.1;3.1Layer-by-Layer Assembly;92
4.2;3.2Prepregging;94
4.3;3.3Vacuum Bagging;95
4.4;3.4Pultrusion;96
4.5;3.5Filament Winding;96
4.6;3.6Resin Transfer Molding (RTM) and Vacuum Assisted RTM (VARTM);97
4.7;3.7Lost Core Molding;98
5;4Current Limitations and Potentials for Electron Beam Curing;100
5.1;4.1Cost Analysis of Electron Beam Curing Processes;100
5.2;4.2Comparison Between Thermal and Electron Beam Cured Materials in Terms of Properties;102
5.3;4.3Summary of Potential Applications for Electron Beam Curing;105
6;5Research Trends and Projects in the Field of Electron Beam Curing;108
7;6Examples of Electron Beam Curing Applications;112
7.1;6.1Automotive;112
7.1.1;6.1.1Composite Concept Vehicle, Daimler-Chrysler;112
7.1.2;6.1.2Composite Armored Vehicle, US Army;112
7.2;6.2Aircraft Industry;114
7.2.1;6.2.1Patch Repairs for Civil and Military Applications;114
7.2.2;6.2.2T-38 Talon, US Air Force;116
7.2.3;6.2.3F/A-18 Hornet, Northrop Grumman;117
7.3;6.3Space Applications;118
7.3.1;6.3.1Space Shuttle Venture Star, Lockheed and NASA;118
7.3.2;6.3.2Satellite’s Flywheel, AFS Trinity and NASA;120
7.3.3;6.3.3Satellite’s Reflector Dish, Acsion and CASA (Spanish space agency);121
8;References;122
9;Appendix 1: Key Players in Electron Beam Curing;130
10;Appendix 2: List of Commercially Available Materials for Electron Beam Curing;132
11;Subject Index;134


Introduction to electron beam curing of compositesAspects of electron beam curable materialsElectron beam curing applied for composite moulding technologiesCurrent limitations and potentials for electron beam curingResearch projects in the field of electron beam curingExamples of electron beam curing applicationsGround vehiclesAircraft industrySpace applicationsSummaryAppendixKey players in electron beam curingList of commercial available materials suitable for electron beam curing


M.Sc. Felipe Wolff-FabrisMr. Wolff-Fabris started his materials engineering studies at the Universidade Federal do Rio Grande do Sul, Brazil in 1999. In 2002, he was selected to participate in a double degree programme at the Ecole Centrale de Nantes in France. Under this programme, he had the opportunity to spend more than two years in France to pursue academic study and collaborative research. His diploma thesis was focused on thermoplastic composites and specifically looked into the functionalization of silane coupling agents for glass fibre reinforced polyethylene. In August 2005, he successfully earned his Master´s degree (Diplôme d'Ingénieur). Subsequently, Mr. Wolff-Fabris joined the Department of Polymer Engineering at the University of Bayreuth, Germany, as scientific member, and in 2007, he became leader of the group "Thermosetting Polymers and Composites"Prof Dr.-Ing. Volker AltstädtAfter his university studies in physics and Dr.-Ing. in 1987 with Prof. Dr.-Ing. Ehrenstein at the department of Mechanical Engineering in Kassel, he worked as a group leader for 8 years in the Department of Polymer Physics under the Polymer Research Division of BASF AG in Ludwigshafen. Since 1995 he has been a full Professor for Polymers in Mechanical Engineering and head of the Department of Polymers and Polymer Composites at the Technical University Hamburg-Harburg, Germany. Since 2000, he has been the head of the Department of Polymer Engineering at the University of Bayreuth, Germany.Dr. Ulrich ArnoldUlrich Arnold studied chemistry at the University of Heidelberg, Germany and received his Ph.D. in 1998. After a postdoctoral stay at the State University of Campinas (Sao Paulo, Brazil) he moved to the Forschungszentrum Karlsruhe, in 2001. He is group leader at the Department of Technical Chemistry and his research activities focus on catalysis (development of catalyst systems based on organic polymers) and polymer



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.