Wright | Quadratic Residues and Non-Residues | Buch | 978-3-319-45954-7 | sack.de

Buch, Englisch, Band 2171, 292 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4686 g

Reihe: Lecture Notes in Mathematics

Wright

Quadratic Residues and Non-Residues

Selected Topics
1. Auflage 2016
ISBN: 978-3-319-45954-7
Verlag: Springer International Publishing

Selected Topics

Buch, Englisch, Band 2171, 292 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4686 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-319-45954-7
Verlag: Springer International Publishing


This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
Wright Quadratic Residues and Non-Residues jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime.- Chapter 2. Basic Facts.- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity.- Chapter 4. Four Interesting Applications of Quadratic Reciprocity.- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications.- Chapter 6. Elementary Proofs.- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues.- Chapter 8. Dirichlet's Class-Number Formula.- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression.- Chapter 10. Are quadratic residues randomly distributed?.- Bibliography.


After earning degrees in mathematics from Western Kentucky University and Indiana University, the author joined the faculty at Oakland University, where he is now Professor of Mathematics in the Department of Mathematics and Statistics. He currently occupies his time studying number theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.