Buch, Englisch, 125 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 224 g
Buch, Englisch, 125 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 224 g
Reihe: Computational Risk Management
ISBN: 978-981-13-9666-3
Verlag: Springer Nature Singapore
The book seeks to provide simple explanations and demonstration of some descriptive tools. This second editionprovides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling. Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting.
Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Management Risikomanagement
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
Chapter 1 Knowledge Management.- Chapter 2 Data Sets.- Chapter 3 Basic Forecasting ToolsChapter 3 Basic Forecasting Tools.- Chapter 4 Multiple Regression.- Chapter 5 Regression Tree Models.- Chapter 6 Autoregressive Models.- Chapter 7 GARCH Models.- Chapter 8 Comparison of Models.