Wu | Statistical Methods for Survival Trial Design | Buch | 978-1-138-03322-1 | sack.de

Buch, Englisch, 273 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 562 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Wu

Statistical Methods for Survival Trial Design

With Applications to Cancer Clinical Trials Using R
1. Auflage 2018
ISBN: 978-1-138-03322-1
Verlag: CRC Press

With Applications to Cancer Clinical Trials Using R

Buch, Englisch, 273 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 562 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-138-03322-1
Verlag: CRC Press


Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R provides a thorough presentation of the principles of designing and monitoring cancer clinical trials in which time-to-event is the primary endpoint. Traditional cancer trial designs with time-to-event endpoints are often limited to the exponential model or proportional hazards model. In practice, however, those model assumptions may not be satisfied for long-term survival trials.

This book is the first to cover comprehensively the many newly developed methodologies for survival trial design, including trial design under the Weibull survival models; extensions of the sample size calculations under the proportional hazard models; and trial design under mixture cure models, complex survival models, Cox regression models, and competing-risk models. A general sequential procedure based on the sequential conditional probability ratio test is also implemented for survival trial monitoring. All methodologies are presented with sufficient detail for interested researchers or graduate students.

Wu Statistical Methods for Survival Trial Design jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface List of Figures List of Tables 1. Introduction to Cancer Clinical Trials General Aspects of Cancer Clinical Trial Design Study Objectives Treatment Plan Eligibility Criteria Statistical Considerations Statistical Aspects of Cancer Survival Trial Design Randomization Stratification Blinding Sample Size Calculation 2. Survival Analysis Survival Distribution Exponential Distribution Weibull Distribution Gamma Distribution Gompertz Distribution Log-Normal Distribution Log-Logistic Distribution Survival Data Fitting the Parametric Survival Distribution Kaplan-Meier Estimates Median Survival Time Log-Rank Test Cox Regression Model 3. Counting Process and Martingale_ Basic Convergence Concepts Counting Process Definition Martingale Central Limit Theorem Counting Process Formulation of Censored Survival Data 4. Survival Trial Design Under the Parametric Model Introduction Weibull Model Test Statistic Distribution of the MLE test Sample Size Formula Sample Size Calculation Accrual Duration Calculation Example and R code 5. Survival Trial Design Under the Proportional Hazards Model Introduction Proportional Hazards Model Asymptotic Distribution of the Log-rank Test Schoenfeld Formula Rubinstein Formula Freedman Formula Comparison Sample Size Calculation Under Various Models Example Optimal Properties of the Log-Rank Test_ Optimal Sample Size Allocation Optimal Power Precise Formula <


Jianrong (John) Wu is a professor in the Division of Cancer Biostatistics, Department of Biostatistics, Markey Cancer Center, University of Kentucky. He has more than 15 years’ experience of designing and conducting cancer clinical trials at St. Jude Children’s Research Hospital and has developed several novel statistical methods for designing phase II and phase III survival trials.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.