Buch, Englisch, Band 118, 195 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1060 g
Buch, Englisch, Band 118, 195 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1060 g
Reihe: Studies in Fuzziness and Soft Computing
ISBN: 978-3-540-00337-3
Verlag: Springer Berlin Heidelberg
Counting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite sets of objects these two aspects are realized by the same type of num bers: the natural numbers. That these complementary aspects of the counting pro cess may need different kinds of numbers becomes apparent if one extends the process of counting to infinite sets. As general tools to determine numbers of elements the cardinals have been created in set theory, and set theorists have in parallel created the ordinals to count over any set of objects. For both types of numbers it is not only counting they are used for, it is also the strongly related process of calculation - especially addition and, derived from it, multiplication and even exponentiation - which is based upon these numbers. For fuzzy sets the idea of counting, in both aspects, looses its naive foundation: because it is to a large extent founded upon of the idea that there is a clear distinc tion between those objects which have to be counted - and those ones which have to be neglected for the particular counting process.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik EDV | Informatik Informatik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
Weitere Infos & Material
1. Triangular Operations and Negations (Allegro).- 1.1. Triangular Norms and Conorms.- 1.2. Negations.- 1.3. Associated Triangular Operations.- 1.4. Archimedean Triangular Operations.- 1.5. Induced Negations and Complementary Triangular Operations.- 1.6. Implications Induced by Triangular Norms.- 2. Fuzzy Sets (Andante spianato).- 2.1. The Concept of a Fuzzy Set.- 2.2. Operations on Fuzzy Sets.- 2.3. Generalized Operations.- 2.4. Other Elements of the Language of Fuzzy Sets.- 2.5. Towards Cardinalities of Fuzzy Sets.- 3. Scalar Cardinalities of Fuzzy Sets (Scherzo).- 3.1. An Axiomatic Viewpoint.- 3.2. Cardinality Patterns.- 3.3. Valuation Property and Subadditivity.- 3.4. Cartesian Product Rule and Complementarity.- 3.5. On the Fulfilment of a Group of the Properties.- 4. Generalized Cardinals with Triangular Norms (Rondeau à la polonaise).- 4.1. Generalized FGCounts.- 4.2. Generalized FLCounts.- 4.3. Generalized FECounts.- List of Symbols.