E-Book, Englisch, 564 Seiten
Xu / Qian / Wu Household Service Robotics
1. Auflage 2014
ISBN: 978-0-12-800943-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 564 Seiten
ISBN: 978-0-12-800943-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Professor, Chinese University of Hong Kong
Autoren/Hrsg.
Weitere Infos & Material
1;Front
Cover;1
2;Household Service Robotics;4
3;Copyright;5
4;Contents;8
5;Preface;20
6;Part 1 -
Introduction;22
6.1;Chapter 1.1 - Introduction;24
6.1.1;1.1.1 Work Environments for Household Service Robots;26
6.1.2;1.1.2 Functionalities of Household Service Robots;27
6.1.3;References;35
7;Part 2 -
Service Robotic System Design;38
7.1;Chapter 2.1 - The State of the Art in Service Robotic System Design;40
7.1.1;2.1.1 Stationary Service Robotic Systems;40
7.1.2;2.1.2 Attached Mobile Service Robotic Systems;41
7.1.3;2.1.3 Mobile Household Service Robotic Systems;42
7.1.4;2.1.4 Summary of Case Studies;49
7.1.5;References;53
7.2;Chapter 2.2 - Surveillance Robot Utilizing Video and Audio Information;56
7.2.1;2.2.1 Introduction;57
7.2.2;2.2.2 System Initialization;59
7.2.3;2.2.3 Video Surveillance;63
7.2.4;2.2.4 Abnormal Audio Information Detection;70
7.2.5;2.2.5 Experimental Results Utilizing Video and Audio Information;74
7.2.6;2.2.6 Conclusions;74
7.2.7;Acknowledgments;76
7.2.8;References;76
7.3;Chapter 2.3 - Robot-Assisted Wayfinding for the Visually Impaired in Structured Indoor Environments;78
7.3.1;2.3.1 Introduction;79
7.3.2;2.3.2 An Ontology of Environments;82
7.3.3;2.3.3 RG-I: A Robotic Guide;83
7.3.4;2.3.4 Wayfinding;87
7.3.5;2.3.5 Pilot Experiments;92
7.3.6;2.3.6 Conclusions;100
7.3.7;Acknowledgments;101
7.3.8;References;101
7.4;Chapter 2.4 - Design and Implementation of a Service Robot for Elders;104
7.4.1;2.4.1 Introduction;105
7.4.2;2.4.2 Robot System;105
7.4.3;2.4.3 Human–Robot Interaction;108
7.4.4;2.4.4 Experiments;110
7.4.5;2.4.5 Conclusion;113
7.4.6;Acknowledgments;114
7.4.7;References;114
7.5;Chapter 2.5 - A Household Service Robot with a Cellphone Interface;116
7.5.1;2.5.1 Introduction;117
7.5.2;2.5.2 System Architecture;120
7.5.3;2.5.3 Grasping Algorithm;121
7.5.4;2.5.4 Solving Subproblem 1;122
7.5.5;2.5.5 Solving Subproblem 2;126
7.5.6;2.5.6 Experiments;129
7.5.7;2.5.7 Conclusion and Future Work;133
7.5.8;Acknowledgments;134
7.5.9;References;134
8;Part 3 -
Mapping and Navigation;136
8.1;Chapter 3.1 - The State of the Art in Mapping and Navigation for Household Service;138
8.1.1;3.1.1 Map Building and Localization;138
8.1.2;3.1.2 Navigation, Path Planning, and Obstacle Avoidance;143
8.1.3;3.1.3 Summary of Case Studies;145
8.1.4;References;147
8.2;Chapter 3.2 - An Error-Aware Incremental Planar Motion Estimation Method Using Paired Vertical Lines for Small Robots in Ur ...;150
8.2.1;3.2.1 Introduction;151
8.2.2;3.2.2 Related Studies;152
8.2.3;3.2.3 Problem Definition;154
8.2.4;3.2.4 Deriving a Minimum Solution with a Single Vertical Line Pair;156
8.2.5;3.2.5 Error-Aware Ego-Motion Estimation Using Multiple Vertical Line Pairs;163
8.2.6;3.2.6 Algorithms;165
8.2.7;3.2.7 Experiments;168
8.2.8;3.2.8 Conclusion and Future Work;175
8.2.9;Acknowledgments;175
8.2.10;References;176
8.3;Chapter 3.3 - Planning and Obstacle Avoidance in Mobile Robotics;180
8.3.1;3.3.1 Introduction;180
8.3.2;3.3.2 Related Work;182
8.3.3;3.3.3 Navigation Architecture;184
8.3.4;3.3.4 Roaming Trails;190
8.3.5;3.3.5 Experimental Results;193
8.3.6;3.3.6 Conclusions;202
8.3.7;References;202
8.4;Chapter 3.4 - Monocular SLAM with Undelayed Initialization for an Indoor Robot;206
8.4.1;3.4.1 Introduction;207
8.4.2;3.4.2 EKF Framework;209
8.4.3;3.4.3 Implementation of SLAM;219
8.4.4;3.4.4 Simulation and Experiment;222
8.4.5;3.4.5 Conclusions and Future Work;229
8.4.6;Appendix Supplementary Data;230
8.4.7;References;230
8.5;Chapter 3.5 - Human-Centered Robot Navigation-Towards a Harmoniously Human–Robot Coexisting Environment;232
8.5.1;3.5.1 Introduction;233
8.5.2;3.5.2 Harmonious Rules;235
8.5.3;3.5.3 Various Sensitive Fields;236
8.5.4;3.5.4 Human-Centered Sensitive Navigation System Architecture;239
8.5.5;3.5.5 Human-Centered Sensitive Navigation;240
8.5.6;3.5.6 Simulations;250
8.5.7;3.5.7 Experimental Results;255
8.5.8;3.5.8 Conclusion and Future Work;261
8.5.9;References;263
9;Part 4 -
Object Recognition;266
9.1;Chapter 4.1 - The State of the Art in Object Recognition for Household Services;268
9.1.1;4.1.1 Overview;268
9.1.2;4.1.2 Summary of Case Studies;274
9.1.3;References;277
9.2;Chapter 4.2 - A Side of Data with My Robot;280
9.2.1;4.2.1 Related Work;284
9.2.2;4.2.2 Contents and Collection Methodology;285
9.2.3;4.2.3 Contents: Robot Sensor Data;285
9.2.4;4.2.4 Annotations and Annotation Methodology;286
9.2.5;4.2.5 Annotation Methodology;288
9.2.6;4.2.6 Applications;291
9.2.7;4.2.7 Future Work;291
9.2.8;4.2.8 Related Work;293
9.2.9;4.2.9 Contents and Collection Methodology;293
9.2.10;4.2.10 Annotations and Annotation Methodology;295
9.2.11;4.2.11 Applications;295
9.2.12;4.2.12 Future Work;297
9.2.13;4.2.13 Related Work;299
9.2.14;4.2.14 Contents and Collection Methodology;299
9.2.15;4.2.15 Annotations and Annotation Methodology;301
9.2.16;4.2.16 Applications;301
9.2.17;References;305
9.3;Chapter 4.3 - Robust Recognition of Planar Mirrored Walls;308
9.3.1;4.3.1 Introduction;308
9.3.2;4.3.2 Related Work;309
9.3.3;4.3.3 Problem Definition;310
9.3.4;4.3.4 Modeling;311
9.3.5;4.3.5 Algorithm;314
9.3.6;4.3.6 Experiments;318
9.3.7;4.3.7 Conclusion and Future Work;321
9.3.8;Acknowledgments;321
9.3.9;References;321
9.4;Chapter 4.4 - Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot;324
9.4.1;4.4.1 Introduction;324
9.4.2;4.4.2 Datasets and Performance Metrics;328
9.4.3;4.4.3 Lowe's SIFT;332
9.4.4;4.4.4 Vocabulary Tree Method;340
9.4.5;4.4.5 Viola–Jones Boosting;349
9.4.6;4.4.6 Discussion;354
9.4.7;4.4.7 Conclusions;355
9.4.8;Acknowledgments;356
9.4.9;References;356
10;Part 5 -
Grasping and Manipulation;360
10.1;Chapter 5.1 - The State of the Art in Grasping and Manipulation for Household Service;362
10.1.1;5.1.1 Target Detection;363
10.1.2;5.1.2 Planning;368
10.1.3;5.1.3 Control;372
10.1.4;5.1.4 Summary of Case Studies;374
10.1.5;References;374
10.2;Chapter 5.2 - A Geometric Approach to Robotic Laundry Folding;378
10.2.1;5.2.1 Introduction;379
10.2.2;5.2.2 Related Work;380
10.2.3;5.2.3 Problem Description;383
10.2.4;5.2.4 Fold Execution;386
10.2.5;5.2.5 Determining the Cloth Polygon;390
10.2.6;5.2.6 Experimental Results;397
10.2.7;5.2.7 Conclusion and Future Work;407
10.2.8;Funding;408
10.2.9;Appendix A: Proof of Theorem 1;409
10.2.10;Appendix B: Shape Models Used;410
10.2.11;Appendix C: Black Box Numerical Optimization;413
10.2.12;References;414
10.3;Chapter 5.3 - Robust Visual Servoing;418
10.3.1;5.3.1 Introduction;419
10.3.2;5.3.2 Motivation;419
10.3.3;5.3.3 Detection and Pose Estimation;421
10.3.4;5.3.4 Transportation: Coarse Visual Servoing;423
10.3.5;5.3.5 Model-Based Visual Servoing;435
10.3.6;5.3.6 Example Tasks;443
10.3.7;5.3.7 Conclusion;446
10.3.8;Acknowledgment;446
10.3.9;References;447
10.4;Chapter 5.4 - Implementation of Cognitive Controls for Robots;450
10.4.1;5.4.1 Introduction;451
10.4.2;5.4.2 Cognitive Control for Robots;451
10.4.3;5.4.3 The Working Memory System;454
10.4.4;5.4.4 The Role of CEA and FRA for Task Switching;458
10.4.5;5.4.5 Self-Motivated, Internal State-Based Action Selection Mechanism;462
10.4.6;5.4.6 Future Plans;469
10.4.7;5.4.7 Conclusions;470
10.4.8;Appendix 1. Spatial Attention and Action Selection;470
10.4.9;Appendix 2. Verbs and Adverbs for Behavior Execution;471
10.4.10;Appendix 3. Memory Contents during Work Memory Training;472
10.4.11;Appendix 4. Perception Encoding Used in FRA Experiment;473
10.4.12;Acknowledgments;474
10.4.13;References;474
11;Part 6 -
Human–Robot Interaction;476
11.1;Chapter 6.1 - The State of the Art in Human–Robot Interaction for Household Services;478
11.1.1;6.1.1 Tactile HRI Systems;478
11.1.2;6.1.2 Summary of Case Studies;483
11.1.3;References;485
11.2;Chapter 6.2 - Evaluating the Robot Personality and Verbal Behavior of Domestic Robots Using Video-Based Studies;488
11.2.1;6.2.1 Introduction;489
11.2.2;6.2.2 VHRI Methodology;490
11.2.3;6.2.3 Experiments;491
11.2.4;6.2.4 Results;498
11.2.5;6.2.5 Discussion;503
11.2.6;6.2.6 Conclusions;504
11.2.7;Acknowledgments;505
11.2.8;References;505
11.3;Chapter 6.3 - Using Socially Assistive Human–Robot Interaction to Motivate Physical Exercise for Older Adults;508
11.3.1;6.3.1 Introduction;509
11.3.2;6.3.2 Related Work;510
11.3.3;6.3.3 SAR Approach;511
11.3.4;6.3.4 Robot Exercise System;513
11.3.5;6.3.5 Motivation Study I: Praise and Relational Discourse Effects;519
11.3.6;6.3.6 Motivation Study II: User Choice and Self-Determination;527
11.3.7;6.3.7 Conclusion;534
11.3.8;Acknowledgments;534
11.3.9;References;535
11.4;Chapter 6.4 - Toward a Human–Robot Symbiotic System;538
11.4.1;6.4.1 Introduction;538
11.4.2;6.4.2 Framework for Human–Humanoid Interaction;540
11.4.3;6.4.3 Robot Memory Data Structures;547
11.4.4;6.4.4 Current Applications;550
11.4.5;6.4.5 Conclusion;552
11.4.6;Acknowledgments;554
11.4.7;References;554
12;Index;556
Introduction
Abstract
With the significant development of robotic technologies, the applications of robots have been extended broadly from their traditional industry role to military, medical field, and even daily services. Robotics has gradually become a very large industry with tremendous influence on the sustainable development of the world.
Keywords
Detection; Dexterity; Motion programming; Planning; Safety; Sensing; Tele-operation
Chapter Outline
1.1.1 Work Environments for Household Service Robots 5
1.1.1.1 Living Rooms/Office Rooms 5
1.1.1.2 Corridors/Narrow Paths 5
1.1.2 Functionalities of Household Service Robots 6
1.1.2.1 Human Detection and Recognition 6
1.1.2.2 Communication with Humans 6
1.1.2.3 Abnormal Event Detection 7
1.1.2.5 Object Pick and Place 7
1.1.2.10 Object Carrying with Humans 9
1.1.2.12 Coaching for Elderly 10
References 14