Yampolskii / FInkelshtein | Membrane Materials for Gas and Separation | Buch | 978-1-119-11271-6 | sack.de

Buch, Englisch, 448 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 839 g

Yampolskii / FInkelshtein

Membrane Materials for Gas and Separation

Synthesis and Application Fo Silicon-Containing Polymers
1. Auflage 2017
ISBN: 978-1-119-11271-6
Verlag: Wiley

Synthesis and Application Fo Silicon-Containing Polymers

Buch, Englisch, 448 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 839 g

ISBN: 978-1-119-11271-6
Verlag: Wiley


Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both.
- Combines membrane science, organosilicon chemistry, polymer science, materials science, and physical chemistry

 
- Only book to consider polymerization chemistry and synthesis of Si-containing polymers (both glassy and rubbery), and their role as membrane materials

 
- Membrane operations present environmental benefits such as reduced waste, and recovered/recycled valuable raw materials that are currently lost to fuel or to flares

Yampolskii / FInkelshtein Membrane Materials for Gas and Separation jetzt bestellen!

Weitere Infos & Material


Contributors xi 

Preface xv 

1 Permeability of Polymers 1
Yuri Yampolskii 

1.1 Introduction 1 

1.2 Detailed mechanism of sorption and transport 3 

1.2.1 Transition-state model 3 

1.2.2 Free volume model 4 

1.2.3 Sorption isotherms 5 

1.3 Concentration dependence of permeability and diffusion coefficients 6 

1.4 Effects of properties of gases and polymers on permeation parameters 10 

Acknowledgement 13 

References 13 

2 Organosiloxanes (Silicones), Polyorganosiloxane Block Copolymers: Synthesis, Properties, and Gas Permeation Membranes Based on Them 17
Igor Raygorodsky, Victor Kopylov, and Alexander Kovyazin 

2.1 Introduction 17 

2.2 Synthesis and transformations of organosiloxanes 17 

2.2.1 Polyorganosiloxanes with aminoalkyl groups at silicon 19 

2.2.2 Organosilicon alcohols and phenols 21 

2.3 Synthesis of polyorganosiloxane block copolymers 23 

2.3.1 Polyester(ether)–polyorganosiloxane block copolymers 24 

2.3.2 Synthesis of polyurethane–, polyurea–, polyamide–, polyimide– organosiloxane POBCs 25 

2.4 Properties of polyorganosiloxane block copolymers 29 

2.4.1 Phase state of polyblock organosiloxane copolymers 29 

2.5 Morphology of POBCs and its effects on their diffusion properties 30 

2.5.1 Types of heterogeneous structure 30 

2.6 Some representatives of POBC as membrane materials and their properties 32 

2.6.1 Polycarbonate–polysiloxanes 32 

2.6.2 Polyurethane(urea)–polysiloxanes 39 

2.6.3 Polyimide(amide)–polysiloxanes 42 

2.7 Conclusions 45 

References 46 

3 Polysilalkylenes 53
Nikolay V. Ushakov, Stepan Guselnikov, and Eugene Finkelshtein 

Acknowledgement 65 

References 65 

4 Polyvinylorganosilanes: The Materials for Membrane Gas Separation 69
Nikolay V. Ushakov 

4.1 Introduction: Historical background 69 

4.2 Syntheses and polymerization of vinyltriorganosilanes 71 

4.2.1 Syntheses of vinyltriorganosilanes 71 

4.2.2 Vinyltriorganosilane (VTOS) polymerization 73 

4.2.2.1 VTOS homopolymerization 73 

4.2.2.2 Statistical copolymerization of VTOS with other monomers 83 

4.2.2.3 Block-copolymerization of VTOS with monomers of other types 85 

4.3 Physico-chemical and membrane properties of polymeric PVTOS materials 88 

4.4 Concluding remarks 94 

Acknowledgement 95 

References 95 

5 Substituted Polyacetylenes 107
Toshikazu Sakaguchi, Yanming Hu, and Toshio Masuda 

5.1 Introduction 107 

5.2 Poly(1-trimethylsilyl-1-propyne) (PTMSP) and related polymers 110 

5.2.1 Synthesis and general properties 110 

5.2.2 Permeation of gases and liquids 112  

5.2.3 Aging effect and cross-linking 114 

5.2.4 Free volume 115 

5.2.5 Nanocomposites and hybrids 116 

5.3 Poly[1-phenyl-2-(p-trimethylsilylphenyl)acetylene] and related polymers 117 

5.3.1 Polymer synthesis 118 

5.3.2 Gas separation 121 

5.4 Desilylated polyacetylenes 124 

5.4.1 Desilylation of poly[1(p-trimethylsilylphenyl)-2-phenylacetylene] 124 

5.4.2 PDPAs from precursor polymers with various silyl groups 125 

5.4.3 Soluble poly(diphenylacetylene)s obtained by desilylation 127 

5.4.4 Poly(diarylacetylene)s 128 

5.5 Polar-group-containing polyacetylenes 130 

5.5.1 Hydroxy group 130 

5.5.2 Sulfonated and nitrated poly(diphenylacetylene)s 132 

5.5.3 Other polar groups 134 

5.6 Concluding remarks 135 

References 136 

6 Polynorbornenes 143
Eugene Finkelshtein, Maria Gringolts, Maksim Bermeshev, Pavel Chapala,and Yulia Rogan 

6.1 Introduction 143 

6.2 Monomer synthesis 144 

6.2.1 Synthesis of silicon-substituted norbornenes and norbornadienes 145 

6.2.1.1 [4p +2p]-cycloaddition of Si-substituted ethylenes and acetylenes to cyclopentadiene 145 

6.2.1.2 Synthesis of silyl-substituted norbornenes and norbornadienes with alkyl and functional substituents via Si–Cl bond transformation 150 

6.2.1.3 Other approaches to silylnorbornene and norbornadiene preparation 151 

6.2.2 Synthesis of Si-containing exo-tricyclo[4.2.1.0 2,5 ]non-7-enes 152 

6.2.2.1 The[2s +2s +2p]-cycloaddition reaction of quadricyclane with Si-containing alkenes or relative compounds as a simple way to highly active monomers 153 

6.2.2.2 Cycloaddition of Q with vinylsilanes or relative compounds 154 

6.2.2.3 Cycloaddition of Q with Si-containing disubstituted alkenes/acetylenes 157 

6.2.2.4 Cycloaddition of Q with Si-containing 1,2,3-trisubstituted alkenes 159 

6.3 Metathesis polynorbornenes 163 

6.4 Addition polymerization 183 

6.4.1 Addition polynorbornenes and polynorbornenes with alkyl side groups 184 

6.4.2 Silicon and germanium-substituted polynorbornenes 187 

6.4.3 Composites with addition silicon-containing polytricyclononenes 205 

6.5 Conclusions 209 

Acknowledgement 210 

References 210 

7 Polycondensation Materials Containing Bulky Side Groups: Synthesis and Transport Properties 223
Susanta BanerjeeandDebaditya Bera 

7.1 Introduction 223 

7.2 Synthesis of the polymers 224 

7.2.1 Polyimides 224 

7.2.1.1 One-step polymerization 224 

7.2.1.2 Two-step polymerization 225 

7.2.2 Poly(arylene ether)s (PAEs) 227 

7.2.3 Aromatic polyamides (PAs) 228 

7.2.3.1 Low temperature polymerization 228 

7.2.3.2 High temperature polymerization 229 

7.3 Effect of different bulky groups on polymer gas transport properties 229 

7.3.1 Gas transport properties of the polyimides containing different bulky groups 229 

7.3.2 Gas transport properties of polyamides containing different bulky groups 241 

7.3.3 Gas transport properties of poly(arylene ether)s containing different bulky groups 248 

7.3.4 Concluding remarks 263 

References 265 

8 Gas and Vapor Transport Properties of Si-Containing and Related Polymers 271
Yuri Yampolskii 

8.1 Introduction 271 

8.2 Rubbery Si-containing polymers 272 

8.2.1 Polysiloxanes 272 

8.2.2 Siloxane-containing copolymers (block copolymers, random copolymers and graft copolymers) 274 

8.2.3 Polysilmethylenes 277 

8.3 Glassy Si-containing polymers 278 

8.3.1 Polymers with Si–O–Si bonds in side chains 278 

8.3.2 Poly(vinyltrimethyl silane) and related vinylic polymers 282 

8.3.3 Metathesis norbornene polymers 285 

8.3.4 Additive norbornene polymers 286 

8.3.5 Polyacetylenes 290 

8.3.6 Other glassy Si-containing polymers 293 

8.4 Free volume in Si-containing polymers 294 

8.5 Concluding remarks 296 

Acknowledgement 298 

References 298 

9 Modeling of Si-Containing Polymers 307
Joel R. Fried, Timothy Dubbs, and Morteza Azizi 

9.1 Introduction 307 

9.2 Main-chain silicon-containing polymers 309 

9.2.1 Polysiloxanes 309 

9.2.2 Polysilanes and silalkylene polymers 314 

9.3 Side-chain silicon-containing polymers 316 

9.3.1 Poly(vinyltrimethylsilane) 316 

9.3.2 Poly[1-(trimethylsilyl)-1-propyne] 317 

9.3.2.1 Conformational studies 318 

9.3.2.2 Simulation of gas transport 319 

9.4 Conclusions 324 

Appendices 325 

9.a Molecular flexibility 325 

9.b Simulation of diffusivity 325 

9.b.1 Einstein relationship 325 

9.b.2 VACF method 325 

9.c Simulation of solubility: Widom method 325 

9.d Molecular mechanics force fields 326 

9.d.1 Dreiding 326 

9.d.2 Polymer-consistent force field (pcff) 326 

9.d.3 Gromos 326 

9.d.4 Compass 326 

References 327 

10 Pervaporation and Evapomeation with Si-Containing Polymers 335
Tadashi Uragami 

10.1 Introduction 335 

10.2 Structural design of Si-containing polymer membranes 335 

10.2.1 Chemical design of Si-containing polymer membrane materials 336 

10.2.2 Physical construction of Si-containing polymer membranes 336 

10.3 Pervaporation 337 

10.3.1 Principle of pervaporation 337 

10.3.2 Fundamentals of pervaporation 338 

10.3.3 Solution–diffusion model in pervaporation 339 

10.4 Evapomeation 340 

10.4.1 Principle of evapomeation 340 

10.4.2 Principle of temperature-difference controlled evapomeation 341 

10.5 Technology of pervaporation with Si-containing polymer membranes 342 

10.5.1 Alcohol permselective membranes 342 

10.5.2 Hydrocarbon permselective membranes 353 

10.5.2.1 Aromatic hydrocarbon removal 353 

10.5.2.2 Chlorinated hydrocarbon removal 358 

10.5.3 Organic permselective membranes 360 

10.5.4 Membranes for separation of organic–organic mixtures 361 

10.5.5 Membranes for optical resolution 362 

10.6 Technology of evapomeation with Si-containing polymer membranes 363 

10.6.1 Permeation and separation by evapomeation 363 

10.6.2 Concentration of ethanol by temperature-difference controlled evapomeation 364 

10.7 Conclusions 365 

References 365 

11 Si-Containing Polymers in Membrane Gas Separation 373
Adele Brunetti, Leonardo Melone, Enrico Drioli, and Giuseppe Barbieri 

Executive summary 373 

11.1 Introduction 373 

11.2 Si-containing polymer membranes used in gas separation 375 

11.2.1 Silicon rubber membrane materials 375 

11.2.2 Polyacetylene membrane materials 376 

11.2.3 Polynorbornene membrane materials 378 

11.2.4 Other Si-containing membrane materials 378 

11.3 Separations 379 

11.4 Membrane modules 381 

11.5 Competing technologies for separation of gases 384 

11.6 Applications 385 

11.6.1 Air separation 385 

11.6.2 Hydrogen separation 386 

11.6.3 Hydrocarbon separation 390 

11.6.4 VOC separation 392 

References 393 

Index 399


Editors
Yuri Yampolskii
Eugene Finkelshtein
A.V. Topchiev Institute of Petrochemical Synthesis, RAS, Moscow, Russia



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.