Buch, Englisch, 416 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 889 g
ISBN: 978-1-119-58332-5
Verlag: Wiley
Phosphors for Radiation Detector
Phosphors for Radiation Detectors
Discover a comprehensive overview of luminescence phosphors for radiation detection
In Phosphors for Radiation Detection, accomplished researchers Takayuki Yanagida and Masanori Koshimizu deliver a state-of-the-art exploration of the use of phosphors in radiation detection. The internationally recognized contributors discuss the fundamental physics and detector functions associated with the technology with a focus on real-world applications.
The book discusses all forms of luminescence phosphors for radiation detection used in a variety of fields, including medicine, security, resource exploration, environmental monitoring, and high energy physics.
Readers will discover discussions of dosimeter materials, including thermally stimulated luminescent materials, optically stimulated luminescent materials, and radiophotoluminescence materials. The book also covers transparent ceramics and glasses and a broad range of devices used in this area.
Phosphors for Radiation Detection also includes: - Thorough introductions to ionizing radiation induced luminescence, organic scintillators, and inorganic oxide scintillators
- Comprehensive explorations of luminescent materials, including discussions of materials synthesis and their use in gamma-ray, neutron, and charged particle detection
- Practical discussions of semiconductor scintillators, including treatments of organic-inorganic layered perovskite materials for scintillation detectors
- In-depth examinations of thermally stimulated luminescent materials, including discussions of the dosimetric properties for photons, charged particles, and neutrons
Relevant for research physicists, materials scientists, and electrical engineers, Phosphors for Radiation Detection is an also an indispensable resource for postgraduate and senior undergraduate students working in detection physics.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Physikalische Chemie Nuklearchemie, Photochemie, Strahlenchemie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Bauelemente, Schaltkreise
Weitere Infos & Material
List of Contributors xi
Preface xiii
Series Preface xv
1 Ionizing Radiation Induced Luminescence 1
Takayuki Yanagida
1.1 Introduction 1
1.2 Interactions of Ionizing Radiation with Matter 3
1.3 Scintillation 4
1.3.1 Energy Conversion Mechanism 4
1.3.2 Emission Mechanism 5
1.3.3 Scintillation Light Yield and Energy Resolution 8
1.3.4 Timing Properties 14
1.3.5 Radiation Hardness 17
1.3.6 Temperature Dependence 18
1.4 Ionizing Radiation Induced Storage Luminescence 18
1.4.1 General Description 18
1.4.2 Analytical Description of TSL 19
1.4.3 Analytical Description of OSL 24
1.5 Relationship of Scintillation and Storage Luminescence 26
1.6 Common Characterization Techniques of Ionizing Radiation Induced Luminescence Properties 29
References 35
2 Organic Scintillators 39
Masanori Koshimizu
2.1 Introduction 39
2.2 Basic Electronic Processes in Organic Scintillators 40
2.2.1 Electronic States and Excited States Dynamics of Organic Molecules 40
2.2.2 Excitation Energy Transfer 43
2.2.3 Scintillation Dynamics in Organic Scintillators at High Linear Energy Transfer 50
2.3 Liquid Scintillators 51
2.4 Organic Crystalline Scintillators 54
2.5 Plastic Scintillators 55
2.6 Organic–Inorganic Hybrid Scintillators 59
2.6.1 Loaded Organic Scintillators 59
2.6.2 Organic–Inorganic Nanocomposite Scintillators 60
References 61
3 Inorganic Oxide Scintillators 67
Daisuke Nakauchi, Noriaki Kawaguchi, and Takayuki Yanagida
3.1 Introduction 67
3.2 Crystal Growth 67
3.3 Outlines of Oxide Scintillators 70
3.4 Silicate Materials 73
3.4.1 Ce:Gd2SiO5 (Ce:GSO) 73
3.4.2 Ce:Lu2SiO5 (Ce:LSO) 74
3.4.3 Ce:Gd2Si2O7 (Ce:GPS) 76
3.4.4 LPS 77
3