Ye | Data Mining | Buch | 978-1-138-07366-1 | sack.de

Buch, Englisch, 349 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 535 g

Reihe: Human Factors and Ergonomics

Ye

Data Mining

Theories, Algorithms, and Examples
1. Auflage 2017
ISBN: 978-1-138-07366-1
Verlag: CRC Press

Theories, Algorithms, and Examples

Buch, Englisch, 349 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 535 g

Reihe: Human Factors and Ergonomics

ISBN: 978-1-138-07366-1
Verlag: CRC Press


New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms.

The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures.

The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.

Ye Data Mining jetzt bestellen!

Zielgruppe


University professors; graduate and upper level undergraduate students; manufacturing engineers; computer science engineers; environmental scientists; operations research professionals; staticians; electrical engineers; mechanical engineers; and chemical engineers.


Autoren/Hrsg.


Weitere Infos & Material


AN OVERVIEW OF DATA MINING METHODOLOGIES: Introduction to data mining methodologies. METHODOLOGIES FOR MINING CLASSIFICATION AND PREDICTION PATTERNS: Regression models. Bayes classifiers. Decision trees. Multi-layer feedforward artificial neural networks. Support vector machines. Supervised clustering. METHODOLOGIES FOR MINING CLUSTERING AND ASSOCIATION PATTERNS: Hierarchical clustering. Partitional clustering. Self-organized map. Probability distribution estimation. Association rules. Bayesian networks. METHODOLOGIES FOR MINING DATA REDUCTION PATTERNS: Principal components analysis. Multi-dimensional scaling. Latent variable analysis. METHODOLOGIES FOR MINING OUTLIER AND ANOMALY PATTERNS: Univariate control charts. Multivariate control charts. METHODOLOGIES FOR MINING SEQUENTIAL AND TIME SERIES PATTERNS: Autocorrelation based time series analysis. Hidden Markov models for sequential pattern mining. Wavelet analysis. Hilbert transform. Nonlinear time series analysis.


Nong Ye is Professor of Industrial Engineering at Arizona State University in Tempe.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.