Yin / Kushner | Stochastic Approximation and Recursive Algorithms and Applications | Buch | 978-1-4419-1847-5 | sack.de

Buch, Englisch, 478 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 750 g

Reihe: Stochastic Modelling and Applied Probability

Yin / Kushner

Stochastic Approximation and Recursive Algorithms and Applications


2. Auflage 2003
ISBN: 978-1-4419-1847-5
Verlag: Springer

Buch, Englisch, 478 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 750 g

Reihe: Stochastic Modelling and Applied Probability

ISBN: 978-1-4419-1847-5
Verlag: Springer


The basic stochastic approximation algorithms introduced by Robbins and MonroandbyKieferandWolfowitzintheearly1950shavebeenthesubject of an enormous literature, both theoretical and applied. This is due to the large number of applications and the interesting theoretical issues in the analysis of “dynamically de?ned” stochastic processes. The basic paradigm is a stochastic di?erence equation such as ? = ? + Y, where ? takes n+1 n n n n its values in some Euclidean space, Y is a random variable, and the “step n size” > 0 is small and might go to zero as n??. In its simplest form, n ? is a parameter of a system, and the random vector Y is a function of n “noise-corrupted” observations taken on the system when the parameter is set to ?. One recursively adjusts the parameter so that some goal is met n asymptotically. Thisbookisconcernedwiththequalitativeandasymptotic properties of such recursive algorithms in the diverse forms in which they arise in applications. There are analogous continuous time algorithms, but the conditions and proofs are generally very close to those for the discrete time case. The original work was motivated by the problem of ?nding a root of a continuous function g ¯(?), where the function is not known but the - perimenter is able to take “noisy” measurements at any desired value of ?. Recursive methods for root ?nding are common in classical numerical analysis, and it is reasonable to expect that appropriate stochastic analogs would also perform well.

Yin / Kushner Stochastic Approximation and Recursive Algorithms and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction: Applications and Issues.- Applications to Learning, Repeated Games, State Dependent Noise, and Queue Optimization.- Applications in Signal Processing, Communications, and Adaptive Control.- Mathematical Background.- Convergence with Probability One: Martingale Difference Noise.- Convergence with Probability One: Correlated Noise.- Weak Convergence: Introduction.- Weak Convergence Methods for General Algorithms.- Applications: Proofs of Convergence.- Rate of Convergence.- Averaging of the Iterates.- Distributed/Decentralized and Asynchronous Algorithms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.