Buch, Englisch, 336 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
Reihe: Machine Learning: Foundations, Methodologies, and Applications
An Evolutionary Learning Approach
Buch, Englisch, 336 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
Reihe: Machine Learning: Foundations, Methodologies, and Applications
ISBN: 978-981-16-4861-8
Verlag: Springer Nature Singapore
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Produktionstechnik
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
Weitere Infos & Material
Part I Introduction.- 1 Introduction.- 2 Preliminaries.- Part II Genetic Programming for Static Production Scheduling Problems.- 3 Learning Schedule Construction Heuristics.- 4 Learning Schedule Improvement Heuristics.- 5 Learning to Augment Operations Research Algorithms.- Part III Genetic Programming for Dynamic Production Scheduling Problems.- 6 Representations with Multi-tree and Cooperative Coevolution.- 7 E?ciency Improvement with Multi-?delity Surrogates.- 8 Search Space Reduction with Feature Selection.- 9 Search Mechanism with Specialised Genetic Operators.- Part IV Genetic Programming for Multi-objective Production Scheduling Problems.- 10 Learning Heuristics for Multi-objective Dynamic Production Scheduling Problems.- 11 Cooperative Coevolutionary for Multi-objective Production Scheduling Problems.- 12 Learning Scheduling Heuristics for Multi-objective Dynamic Flexible Job Shop Scheduling.- Part V Multitask Genetic Programming for Production Scheduling Problems.- 13 Multitask Learning in Hyper-heuristic Domain with Dynamic Production Scheduling.- 14 Adaptive Multitask Genetic Programming for Dynamic Job Shop Scheduling.- 15 Surrogate-Assisted Multitask Genetic Programming for Learning Scheduling Heuristics.- Part VI Conclusions and Prospects.- 16 Conclusions and Prospects.