Zhang | Rock Fracture and Blasting | E-Book | sack.de
E-Book

E-Book, Englisch, 528 Seiten

Zhang Rock Fracture and Blasting

Theory and Applications
1. Auflage 2016
ISBN: 978-0-12-802704-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Theory and Applications

E-Book, Englisch, 528 Seiten

ISBN: 978-0-12-802704-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Rock Fracture and Blasting: Theory and Applications provides the latest on stress waves, shock waves, and rock fracture, all necessary components that must be critically analyzed to maximize results in rock blasting. The positioning of charges and their capacity and sequencing are covered in this book, and must be carefully modeled to minimize impact in the surrounding environment. Through an explanation of these topics, author Professor Zhang's experience in the field, and his theoretical knowledge, users will find a thorough guide that is not only up-to-date, but complete with a unique perspective on the field. - Includes a rigorous exposition of Stress Waves and Shock Waves, as well as Rock Fracture and Fragmentation - Provides both Empirical and Hybrid Stress Blasting Modeling tools and techniques for designing effective blast plans - Offers advanced knowledge that enables users to choose better blast techniques - Includes exercises for learning and training in each chapter

Dr. Zhang has published over 70 articles including 20 ones in international journals such as International Journal Rock Mechanic Mineral Science from Elsevier. Some of them are cited by more than 60-70 in Scopus. One book was also published in China. Has extensive experience on Rock Blasting problem solving.

Zhang Rock Fracture and Blasting jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Title Page;4
3;Copyright Page;5
4;Contents;8
5;Dedication;6
6;About the Author;20
7;Preface;22
8;Part I - Stress Waves and Shock Waves;24
8.1;Chapter 1 - Stress Waves;26
8.1.1;1.1 - Coordinates, wave velocity, and particle velocity;27
8.1.1.1;1.1.1 - Coordinates;27
8.1.1.2;1.1.2 - Wave Velocity and Particle Velocity;27
8.1.2;1.2 - Category of stress waves in solids;28
8.1.2.1;1.2.1 - Body Waves;28
8.1.2.1.1;1.2.1.1 - P-Waves;28
8.1.2.1.2;1.2.1.2 - S-Waves;29
8.1.2.2;1.2.2 - Surface Waves;29
8.1.2.2.1;1.2.2.1 - Rayleigh Waves;30
8.1.2.2.2;1.2.2.2 - Love Waves;30
8.1.2.2.3;1.2.2.3 - Stoneley Waves;31
8.1.2.3;1.2.3 - Stress Waves Relevant to Stress–Strain Relation of Materials;31
8.1.2.3.1;1.2.3.1 - Elastic Waves;31
8.1.2.3.2;1.2.3.2 - Plastic Waves;31
8.1.2.3.3;1.2.3.3 - Shock Waves;31
8.1.2.4;1.2.4 - Other Names of Waves;31
8.1.2.4.1;1.2.4.1 - Seismic Waves and Vibration Waves;31
8.1.2.4.2;1.2.4.2 - Taylor Waves, Rarefaction Waves, and Unloading Waves;31
8.1.3;1.3 - Reflection and transmission of elastic waves;32
8.1.3.1;1.3.1 - Reflection of Elastic Waves on a Free Surface;32
8.1.3.1.1;1.3.1.1 - A P-Wave Incident on a Free Surface;32
8.1.3.1.2;1.3.1.2 - An S-Wave Incident on a Free Surface;32
8.1.3.2;1.3.2 - Reflection and Transmission of Elastic Waves at an Interface Between Two Media;33
8.1.3.2.1;1.3.2.1 - Reflection and Transmission of an Incident P-Wave on a Plane Interface;33
8.1.3.2.2;1.3.2.2 - Reflection and Transmission of an Incident S-Wave on a Plane Interface;33
8.1.3.3;1.3.3 - Stress Waves from Rock Blasting;33
8.1.4;1.4 - Theory of one-dimensional elastic stress waves;33
8.1.4.1;1.4.1 - Wave Equation in One-Dimensional Condition;33
8.1.4.2;1.4.2 - Solution of Wave Equation;35
8.1.5;1.5 - Stress wave analysis using a Lagrangian diagram;37
8.1.5.1;1.5.1 - Lagrangian Diagram for Elastic Waves;37
8.1.5.2;1.5.2 - Lagrangian Diagram for Elastic–Plastic Loading Waves;38
8.1.6;1.6 - Impact of two elastic bars;40
8.1.6.1;1.6.1 - General Case;40
8.1.6.2;1.6.2 - Special Cases;41
8.1.6.2.1;1.6.2.1 - Case 1: An Elastic Bar Impacts on a Rigid Wall;41
8.1.6.2.2;1.6.2.2 - Case 2: A Rigid Bar Impacts on an Elastic Bar;41
8.1.6.2.3;1.6.2.3 - Case 3: An Elastic Bar Impacts Another Elastic Bar Which Stands Still;41
8.1.6.2.4;1.6.2.4 - Case 4: A Hard Bar Impacts a Soft Bar;42
8.1.6.2.5;1.6.2.5 - Case 5: A Soft Bar Impacts a Hard Bar;42
8.1.7;1.7 - Energy in an impact system;42
8.1.7.1;1.7.1 - Relation Between Kinetic Energy and Strain Energy;42
8.1.7.2;1.7.2 - Energy Transmission;43
8.1.8;1.8 - Propagation of elastic waves in two different materials;43
8.1.8.1;1.8.1 - General Case;43
8.1.8.2;1.8.2 - Special Cases;45
8.1.8.2.1;1.8.2.1 - A Stress Wave Propagates from a Soft to a Hard Material;45
8.1.8.2.2;1.8.2.2 - A Stress Wave Propagates from a Hard to a Soft Material;45
8.1.9;1.9 - Wave reflection on a rigid wall and on a free surface;45
8.1.9.1;1.9.1 - On a Rigid Wall;45
8.1.9.2;1.9.2 - On a Free Surface;45
8.1.10;1.10 - Propagation of elastic waves in three different materials;46
8.1.11;1.11 - Superposition of elastic stress waves;47
8.1.11.1;1.11.1 - Superposition of Two Compressive Elastic Stress Waves;47
8.1.11.2;1.11.2 - Superposition of One Tensile Wave and One Compressive Wave;47
8.1.11.3;1.11.3 - Superposition of Two P-Waves from Two Blastholes;48
8.1.12;1.12 - Spalling caused by stress wave loading;48
8.1.12.1;1.12.1 - A Triangular Wave Reflected from a Free Surface;49
8.1.12.2;1.12.2 - Spalling Caused by a Triangular Wave;50
8.1.13;1.13 - Split Hopkinson pressure bar system;52
8.1.14;1.14 - Attenuation and dispersion of stress waves;53
8.1.14.1;1.14.1 - Factors Influencing Attenuation and Dispersion;53
8.1.14.2;1.14.2 - Wave Attenuation Measured at Laboratory;55
8.1.14.3;1.14.3 - Wave Attenuation and Dispersion Measured in the Field;55
8.1.15;1.15 - Separation of two waves from a blast;55
8.1.16;1.16 - Sonic velocities and densities of different mediums;56
8.1.17;1.17 - Concluding remarks;57
8.1.17.1;1.17.1 - Velocities of P- and S-Waves;57
8.1.17.2;1.17.2 - Velocities of Body and Surface Waves;59
8.1.17.3;1.17.3 - Stress Waves and Shock Waves;59
8.1.17.4;1.17.4 - Stress Wave Reflection from a Free Surface;59
8.1.17.5;1.17.5 - Reflection and Transmission of Stress Waves Through an Interface;59
8.1.17.6;1.17.6 - Stresses in One-Dimensional Elastic Waves;60
8.1.17.7;1.17.7 - Impact of Two Elastic Bars;60
8.1.17.8;1.17.8 - Elastic Waves Propagating in Two Bars;60
8.1.17.9;1.17.9 - Elastic Waves to a Rigid Wall and a Free Surface;60
8.1.17.10;1.17.10 - Spalling Induced by Tensile Stress Waves;60
8.1.17.11;1.17.11 - Attenuation and Dispersion of Stress Waves in Rocks;60
8.1.18;1.18 - Exercises;60
8.1.19;References;61
8.2;Chapter 2 - Shock Waves;62
8.2.1;2.1 - Characteristics of shock waves;62
8.2.2;2.2 - Rankine–Hugoniot jump equations;63
8.2.2.1;2.2.1 - Developing Rankine–Hugoniot Jump Equations;63
8.2.2.1.1;2.2.1.1 - Equation of Mass Conservation;63
8.2.2.1.2;2.2.1.2 - Equation of Momentum Conservation;64
8.2.2.1.3;2.2.1.3 - Equation of Energy Conservation;64
8.2.2.2;2.2.2 - Solution to the Rankine–Hugoniot Jump Equations;65
8.2.2.2.1;2.2.2.1 - The U?u Hugoniot Equation;65
8.2.2.2.2;2.2.2.2 - The p?u Hugoniot Equation;65
8.2.2.2.3;2.2.2.3 - The p?v Hugoniot Equation;65
8.2.2.2.4;2.2.2.4 - Solution as Equation of State is Known;68
8.2.2.2.5;2.2.2.5 - Solving a Shock Wave Problem Based on a Known ?? Hugoniot;68
8.2.2.2.6;2.2.2.6 - Solving a Shock Wave Problem Based on a Given Equation of State;69
8.2.3;2.3 - Interaction of shock waves;73
8.2.3.1;2.3.1 - Impact of Two Different Materials;73
8.2.3.1.1;2.3.1.1 - Rankine–Hugoniot Jump Conditions;74
8.2.3.1.2;2.3.1.2 - Hugoniot Equations;76
8.2.3.2;2.3.2 - Impact Between Same Materials;77
8.2.3.3;2.3.3 - Shock Propagation from One Material to Another;79
8.2.3.3.1;2.3.3.1 - Solution to Case 1—ZA < ZB;79
8.2.3.3.2;2.3.3.2 - Example for Case 1;80
8.2.3.3.3;2.3.3.3 - Solution to Case 2—ZA > ZB;80
8.2.3.3.4;2.3.3.4 - Example for Case 2;81
8.2.3.4;2.3.4 - Collision of Two Shock Waves;82
8.2.4;2.4 - Rarefaction waves;84
8.2.5;2.5 - Shock wave attenuation;84
8.2.5.1;2.5.1 - Shock Wave Attenuation Due to Rarefaction;84
8.2.5.2;2.5.2 - Experimental Result for Shock Wave Attenuation in Different Materials;85
8.2.5.3;2.5.3 - Shock Wave Attenuation in Rock Blasting;87
8.2.6;2.6 - On applications of shock wave theory;87
8.2.6.1;2.6.1 - Shock Wave Traveling from Low Impedance Material to High Impedance Material;87
8.2.6.2;2.6.2 - Shock Wave Traveling from High Impedance Material to Low Impedance Material;87
8.2.6.3;2.6.3 - Shock Wave Traveling from One Material to a Free Surface;87
8.2.6.4;2.6.4 - Shock Wave Collision;87
8.2.7;2.7 - Concluding remarks;88
8.2.7.1;2.7.1 - Rankine–Hugoniot Jump Equations;88
8.2.7.2;2.7.2 - Hugoniot Relations;88
8.2.7.3;2.7.3 - p–u Hugoniot Equations;88
8.2.7.4;2.7.4 - Rarefaction;88
8.2.7.5;2.7.5 - Shock Wave Propagates from One Material to Another;88
8.2.7.6;2.7.6 - Shock Wave Reflection on a Free Surface;88
8.2.7.7;2.7.7 - Shock Wave Collision;88
8.2.7.8;2.7.8 - Shock Wave Attenuation;89
8.2.8;2.8 - Exercises;89
8.2.9;References;89
9;Part II - Rock Fracture and Fragmentation;90
9.1;Chapter 3 - Rock Fracture and Rock Strength;92
9.1.1;3.1 - Rocks;92
9.1.1.1;3.1.1 - Igneous Rock;93
9.1.1.2;3.1.2 - Metamorphic Rock;93
9.1.1.3;3.1.3 - Sedimentary Rock;94
9.1.1.4;3.1.4 - Fundamental Characteristics of Rocks;94
9.1.1.4.1;3.1.4.1 - A Compound of Multi-Mineral Grains;94
9.1.1.4.2;3.1.4.2 - Grain Boundaries;94
9.1.1.4.3;3.1.4.3 - Discontinuity;95
9.1.1.4.4;3.1.4.4 - Porosity;95
9.1.1.4.5;3.1.4.5 - Brittleness;95
9.1.2;3.2 - Geological structures;95
9.1.2.1;3.2.1 - Effect of Geological Structures on Rock Fracture;95
9.1.2.2;3.2.2 - Moving Geological Structures;96
9.1.3;3.3 - Rock strength;97
9.1.3.1;3.3.1 - Definition of Rock Strength;97
9.1.3.2;3.3.2 - Stress Concentration;98
9.1.3.3;3.3.3 - Intrinsic Cracks in a Material;99
9.1.3.4;3.3.4 - Theoretical Strength of Material;100
9.1.3.5;3.3.5 - Griffith Strength Relation;100
9.1.3.6;3.3.6 - Griffith Energy-Balance Concept;101
9.1.4;3.4 - Rock fracture and fracture toughness;101
9.1.4.1;3.4.1 - Fracture Toughness and Energy;101
9.1.4.2;3.4.2 - Stress Intensity Factor;102
9.1.4.3;3.4.3 - Rock Fracture in Engineering;103
9.1.5;3.5 - Rock fragmentation;103
9.1.6;3.6 - Relation between rock strengths;103
9.1.7;3.7 - Relation between fracture toughness and strength;104
9.1.7.1;3.7.1 - Relation Between Mode I Fracture Toughness and Tensile Strength of Rock;104
9.1.7.2;3.7.2 - Other Relations;105
9.1.8;3.8 - The reason why rock fracture toughness and rock strengths are related;105
9.1.9;3.9 - Process of rock fracture;105
9.1.9.1;3.9.1 - Link-up of Micro-Cracks;105
9.1.9.2;3.9.2 - Crack Extension;106
9.1.9.3;3.9.3 - Tensile or Shear Fracture;106
9.1.9.4;3.9.4 - Patterns of Rock Fracture in Compressive Strength Tests;106
9.1.10;3.10 - Energy required for rock fracture;106
9.1.10.1;3.10.1 - Energy Required for Fracture;106
9.1.10.2;3.10.2 - Energy Expenditure in Rock Fracture;107
9.1.11;3.11 - Discussion;107
9.1.11.1;3.11.1 - Evaluation of Rock Quality;107
9.1.11.2;3.11.2 - Mechanism of Rock Failure;107
9.1.11.3;3.11.3 - Energy Consumed in Rock Fracture;107
9.1.12;3.12 - Concluding remarks;108
9.1.12.1;3.12.1 - Characteristics of Three Types of Rocks;108
9.1.12.2;3.12.2 - Factors Affecting Rock Properties;108
9.1.12.3;3.12.3 - Basic Characteristics of Rocks;108
9.1.12.4;3.12.4 - Discontinuities of Rock;108
9.1.12.5;3.12.5 - Geological Structures;108
9.1.12.6;3.12.6 - Strength and Theoretical Strength;108
9.1.12.7;3.12.7 - Relation Between Different Rock Strengths;108
9.1.12.8;3.12.8 - Rock Strength;109
9.1.12.9;3.12.9 - Relation Between the Strength and Mode I Fracture Toughness of Rock;109
9.1.12.10;3.12.10 - Fracture Toughness and Fracture Energy;109
9.1.12.11;3.12.11 - Tensile Fracture in Micro-Scale During Compressive Testing;109
9.1.12.12;3.12.12 - Tensile Strength;109
9.1.12.13;3.12.13 - Energy Partitioning in Rock Fracture;109
9.1.12.14;3.12.14 - Characteristic Impedance of Rock;109
9.1.12.15;3.12.15 - Difference Between the Effective Fracture Surface Energy and the Energy Actually Consumed;110
9.1.13;3.13 - Exercises;110
9.1.14;References;110
9.2;Chapter 4 - Effect of Loading Rate on Rock Fracture;112
9.2.1;4.1 - Loading rate;113
9.2.1.1;4.1.1 - Definition of Loading Rate;113
9.2.1.2;4.1.2 - Static, Quasistatic, and Dynamic Loading;113
9.2.1.3;4.1.3 - Estimated Loading Rate in Rock Boring and Percussive Drilling;113
9.2.1.4;4.1.4 - How to Change Loading Rate;114
9.2.2;4.2 - Effect of loading rate on Young’s modulus;114
9.2.3;4.3 - Effect of loading rate on compressive rock strength;115
9.2.4;4.4 - Effect of loading rate on tensile rock strength;115
9.2.5;4.5 - Effect of loading rate on shear strength;116
9.2.6;4.6 - Effect of loading rate on rock fracture toughness;117
9.2.6.1;4.6.1 - Method for Measuring Fracture Toughness;117
9.2.6.2;4.6.2 - Fracture Toughness of Rock;117
9.2.6.3;4.6.3 - Effect of Loading Rate on Fracture Toughness of Other Brittle Materials;119
9.2.7;4.7 - Effect of loading rate on sizes of fragments;119
9.2.7.1;4.7.1 - Fragments From Compressive Strength Tests;119
9.2.7.2;4.7.2 - Fragments From Tensile Strength Tests;119
9.2.7.3;4.7.3 - Fragments From Fracture Toughness Tests;119
9.2.8;4.8 - Effect of loading rate on fracture surface characteristics;124
9.2.8.1;4.8.1 - Characteristics on Fracture Surfaces;124
9.2.8.2;4.8.2 - Characteristics on Vertical Sections of Fracture Surfaces;124
9.2.8.3;4.8.3 - Fractal Dimensions of Rock Fracture Surfaces;125
9.2.9;4.9 - Effect of loading rate on energy consumption in rock fracture;125
9.2.9.1;4.9.1 - Energy Partitioning in Rock Fracture and Compressive Tests;125
9.2.9.2;4.9.2 - Kinetic Energy in Rock Fracture;127
9.2.9.3;4.9.3 - Rotation Energy;127
9.2.9.4;4.9.4 - Experiments on Single-Particle Breakage and Energy Efficiency;128
9.2.9.5;4.9.5 - Energy Efficiency in Rock Fragmentation;129
9.2.10;4.10 - Engineering applications;129
9.2.11;4.11 - Concluding remarks;130
9.2.11.1;4.11.1 - Effects of Loading Rate on Rock Strengths and Fracture Toughness;130
9.2.11.2;4.11.2 - Effects of Loading Rate on Energy Partitioning and Efficiency;130
9.2.11.3;4.11.3 - Kinetic Energy of Fragments and Its Utilization in Rock Fracture and Fragmentation;131
9.2.11.4;4.11.4 - Reasons for the Loading Rate Effect on Rock Fracture Toughness;131
9.2.12;4.12 - Exercises;131
9.2.13;References;132
9.3;Chapter 5 - Effect of Temperature on Rock Fracture;134
9.3.1;5.1 - Thermal, physical, and mechanical properties of rock;135
9.3.1.1;5.1.1 - Thermal Properties of Rock;135
9.3.1.1.1;5.1.1.1 - Melting Temperature;135
9.3.1.1.2;5.1.1.2 - Specific Heat;135
9.3.1.1.3;5.1.1.3 - Thermal Conductivity;135
9.3.1.1.4;5.1.1.4 - Thermal Diffusivity;135
9.3.1.2;5.1.2 - Mechanical Properties of Rock;136
9.3.1.2.1;5.1.2.1 - Young’s Modulus;136
9.3.1.2.2;5.1.2.2 - Poisson’s Ratio;136
9.3.1.2.3;5.1.2.3 - Viscosity and Permeability;136
9.3.1.2.4;5.1.2.4 - Thermal Expansion;136
9.3.1.2.5;5.1.2.5 - Porosity;137
9.3.1.2.6;5.1.2.6 - P-Wave Velocity;137
9.3.1.3;5.1.3 - Thermal Stresses;137
9.3.2;5.2 - Compressive rock strength;137
9.3.2.1;5.2.1 - Compressive Strength Under Static Loading;137
9.3.2.1.1;5.2.1.1 - Heat-Treated Rocks;137
9.3.2.1.2;5.2.1.2 - Heating or Cooling Rate;138
9.3.2.1.3;5.2.1.3 - Strain Rate;138
9.3.2.1.4;5.2.1.4 - Heating Condition;139
9.3.2.1.5;5.2.1.5 - Low Temperature (<0°C);140
9.3.2.2;5.2.2 - Compressive Strength Under Dynamic Loading;140
9.3.3;5.3 - Tensile strength;140
9.3.3.1;5.3.1 - Heat-Treated Rock;140
9.3.3.2;5.3.2 - Low Temperature;140
9.3.4;5.4 - Fracture toughness;140
9.3.4.1;5.4.1 - Fracture Toughness Under Static Loading;140
9.3.4.1.1;5.4.1.1 - High Temperature;141
9.3.4.1.2;5.4.1.2 - Subzero and Room Temperature;141
9.3.4.1.3;5.4.1.3 - High Temperature With Confining Pressure;141
9.3.4.2;5.4.2 - Dynamic Fracture Toughness;142
9.3.4.2.1;5.4.2.1 - Fracture Toughness;142
9.3.4.2.2;5.4.2.2 - Breakage of Rock Specimens;142
9.3.4.2.3;5.4.2.3 - Characteristics of Crack Branching;142
9.3.4.3;5.4.3 - Energy Partitioning During Dynamic Fracture;144
9.3.4.3.1;5.4.3.1 - Energy Expenditure and Energy Efficiency From Dynamic Fracture Tests;144
9.3.4.3.2;5.4.3.2 - Energy Consumption During Static and Dynamic Compression Tests;145
9.3.5;5.5 - Characteristics of thermal damage;145
9.3.5.1;5.5.1 - Characteristics of Fracture;145
9.3.5.2;5.5.2 - Thermal Damage;148
9.3.5.2.1;5.5.2.1 - Thermal Cracking in Grain Boundaries and Within Grains;148
9.3.5.2.2;5.5.2.2 - Reasons for Thermal Damage;148
9.3.5.3;5.5.3 - Fracture Energy and Thermal Damage;149
9.3.6;5.6 - Rock fragmentation;149
9.3.6.1;5.6.1 - Thermally Assisted Liberation in Comminution;149
9.3.6.2;5.6.2 - Thermally Assisted Liberation in Secondary Metal Recovery;149
9.3.6.3;5.6.3 - Water and Thermal Spalling;149
9.3.7;5.7 - Cyclic temperature loading to rock;149
9.3.8;5.8 - Dynamic fracture mechanism of rock;150
9.3.9;5.9 - On applications;151
9.3.9.1;5.9.1 - Using High Temperature Combined With Low Loading Rate to Fracture Rock;151
9.3.9.2;5.9.2 - Improving Efficiency of Size Reduction Processes;151
9.3.9.3;5.9.3 - Microwave Radiation;151
9.3.9.4;5.9.4 - Thermal Mechanical Drilling and Tunneling;151
9.3.9.5;5.9.5 - Thermal Fracture of Stones;152
9.3.9.6;5.9.6 - Thermal Rock-Weakening Techniques;152
9.3.9.7;5.9.7 - Challenges in Rock Drilling, Boring, and Blasting due to High Temperature;152
9.3.10;5.10 - Concluding remarks;153
9.3.10.1;5.10.1 - Rock Properties;153
9.3.10.2;5.10.2 - Effect of High Temperature on Rock Strengths;154
9.3.10.3;5.10.3 - Effect of Heating or Cooling Rate and Heating Methods on Rock Fracture;154
9.3.10.4;5.10.4 - Effect of High Temperature on Rock Fracture Toughness;154
9.3.10.5;5.10.5 - Thermal Damage Caused by Heat Treatment;154
9.3.10.6;5.10.6 - Applications;154
9.3.11;5.11 - Exercises;154
9.3.12;References;155
9.4;Chapter 6 - Environmental Effects on Rock Fracture;158
9.4.1;6.1 - Water;158
9.4.1.1;6.1.1 - Water Saturation With Time;159
9.4.1.2;6.1.2 - Effective Pressure;159
9.4.1.3;6.1.3 - Effect of Water Saturation on Elastic Wave Velocity and Rock Fracture;160
9.4.1.4;6.1.4 - Effect of Water on Rock Strength and Fracture Toughness;160
9.4.1.5;6.1.5 - Effect of Water on the Stability of Tunnels and Slopes;162
9.4.1.6;6.1.6 - Water Effect and Loading Rate;163
9.4.1.7;6.1.7 - Effect of Water on Grinding;163
9.4.1.8;6.1.8 - Effect of Water on Blasting;163
9.4.2;6.2 - Chemical liquids;164
9.4.2.1;6.2.1 - Effect of Chemical Liquids on Compressive Strength;164
9.4.2.2;6.2.2 - Effect of Chemical Liquids on Tensile Strength of Limestone;164
9.4.2.3;6.2.3 - Effect of Chemical Liquids on Fracture Toughness;164
9.4.3;6.3 - Confining pressure;164
9.4.3.1;6.3.1 - Effect of Confining Pressure on Wave Velocity and Wave Attenuation;165
9.4.3.2;6.3.2 - Effect of Confining Pressure on Young’s Modulus and Poisson’s Ratio;167
9.4.3.3;6.3.3 - Effect of Confining Pressure on Compressive Strength;167
9.4.3.4;6.3.4 - Effect of Confining Pressure on Fracture Toughness;168
9.4.3.5;6.3.5 - Effect of Confining Pressure on the Stability of Tunnel;168
9.4.4;6.4 - Cyclic loading;171
9.4.4.1;6.4.1 - Fatigue Strength of Rock;171
9.4.4.2;6.4.2 - Effect of Cyclic Number on Fatigue Strength;173
9.4.4.3;6.4.3 - Effect of Cyclic Amplitude on Fatigue Strength;173
9.4.4.4;6.4.4 - Effect of Cyclic Frequency on Fatigue Strength;173
9.4.4.5;6.4.5 - Fatigue Strength of Saturated, Frozen, and Jointed Rock;173
9.4.5;6.5 - Concluding remarks;174
9.4.5.1;6.5.1 - Effect of Water on Rock Fracture;174
9.4.5.2;6.5.2 - Effect of Chemical Fluids on Rock Fracture;174
9.4.5.3;6.5.3 - Effect of Confining Pressure on Rock Fracture;174
9.4.5.4;6.5.4 - Effect of Cyclic Loading on Rock Fracture;174
9.4.6;6.6 - Exercises;175
9.4.7;References;175
9.5;Chapter 7 - Rock Drilling and Boring;178
9.5.1;7.1 - Methods for rock drilling and boring;178
9.5.1.1;7.1.1 - Percussive Drilling;178
9.5.1.2;7.1.2 - Rotary Drilling;180
9.5.1.3;7.1.3 - Rock Boring;182
9.5.2;7.2 - Mechanism of rock breakage;184
9.5.2.1;7.2.1 - Indenters;184
9.5.2.2;7.2.2 - Elastic Stress Distribution;184
9.5.2.3;7.2.3 - Elastic–Plastic Indentation;187
9.5.2.4;7.2.4 - Crack Length and Penetration;188
9.5.2.5;7.2.5 - Mechanisms of Rock Drilling;190
9.5.3;7.3 - Loading rate AND temperature;191
9.5.3.1;7.3.1 - Loading Rate;191
9.5.3.2;7.3.2 - Temperature;191
9.5.4;7.4 - Discharge of cuttings during drilling and boring;192
9.5.4.1;7.4.1 - Effect of Cutting Discharge on the Speed of Drilling and Boring;192
9.5.4.2;7.4.2 - Methods for Discharging Cuttings;192
9.5.5;7.5 - Deviation;192
9.5.6;7.6 - Operational skills;192
9.5.6.1;7.6.1 - Choosing Drilling Methods and Drill Hole Sizes;192
9.5.6.2;7.6.2 - Drilling Speed and Drill Bit Reshaping;193
9.5.6.3;7.6.3 - Correct Operation;193
9.5.7;7.7 - Potential to development;193
9.5.7.1;7.7.1 - Rock Boring;193
9.5.7.2;7.7.2 - Percussive Drilling;194
9.5.7.3;7.7.3 - Rotary Drilling;195
9.5.8;7.8 - Concluding remarks;195
9.5.8.1;7.8.1 - Percussive Drilling;195
9.5.8.2;7.8.2 - Rotary Drilling;196
9.5.8.3;7.8.3 - Rock Boring;196
9.5.8.4;7.8.4 - Potential Development of Rock Drilling and Boring;196
9.5.9;7.9 - Exercises;196
9.5.10;Appendix I;197
9.5.11;References;198
10;Part III - Explosive Donation in a Blast Hole;200
10.1;Chapter 8 - Explosives and Detonators;202
10.1.1;8.1 - History;202
10.1.2;8.2 - Categories of explosives;203
10.1.2.1;8.2.1 - Primary Explosives;203
10.1.2.2;8.2.2 - Secondary Explosives;203
10.1.2.3;8.2.3 - Tertiary Explosives;203
10.1.2.4;8.2.4 - Ammonium Nitrate;203
10.1.2.5;8.2.5 - Water Gels or Slurries;203
10.1.2.6;8.2.6 - Dynamite;204
10.1.2.7;8.2.7 - Explosives in Underground Coal Mining;204
10.1.3;8.3 - ANFO explosives;204
10.1.4;8.4 - Emulsion explosives;204
10.1.5;8.5 - ANFO–emulsion mixtures, low-density explosives, and propellants;205
10.1.5.1;8.5.1 - ANFO–Emulsion Mixtures;205
10.1.5.2;8.5.2 - Low-Density Explosives;205
10.1.5.3;8.5.3 - Propellants;205
10.1.6;8.6 - Initiation of explosives;205
10.1.6.1;8.6.1 - Explosion and Oxygen Balance;205
10.1.6.2;8.6.2 - Connection Between Detonators and Detonating Cord;205
10.1.6.3;8.6.3 - Charging Operation;207
10.1.6.4;8.6.4 - Sympathetic Detonation;207
10.1.6.5;8.6.5 - Desensitization;208
10.1.6.6;8.6.6 - Deflagration;208
10.1.7;8.7 - Detonators;208
10.1.7.1;8.7.1 - Electric Detonators;209
10.1.7.2;8.7.2 - Nonelectric Detonators;209
10.1.7.3;8.7.3 - Electronic Detonator;209
10.1.7.4;8.7.4 - Detonating Cord;210
10.1.8;8.8 - Precision in the initiation of detonators;210
10.1.9;8.9 - Charge diameter and VOD;211
10.1.9.1;8.9.1 - VOD of ANFO and Emulsions;211
10.1.9.2;8.9.2 - Energy Loss;211
10.1.9.3;8.9.3 - Critical Diameter;213
10.1.10;8.10 - Matching of explosives and rock mass;213
10.1.10.1;8.10.1 - Case 1—??;213
10.1.10.2;8.10.2 - Case 2—??;213
10.1.10.3;8.10.3 - VOD and Fragmentation;215
10.1.11;8.11 - Safety in charging operation;215
10.1.12;8.12 - On the relation between VOD and rock fracture;216
10.1.13;8.13 - Concluding remarks;216
10.1.13.1;8.13.1 - Oxygen Balance and Explosive Energy;216
10.1.13.2;8.13.2 - ANFO Explosives;216
10.1.13.3;8.13.3 - Emulsion Explosives;216
10.1.13.4;8.13.4 - Heavy ANFO;217
10.1.13.5;8.13.5 - Electric Detonators;217
10.1.13.6;8.13.6 - Nonelectric Detonators;217
10.1.13.7;8.13.7 - Electronic Detonators;217
10.1.13.8;8.13.8 - Precision of Initiation;217
10.1.13.9;8.13.9 - Matching of Explosive and Rock Mass;217
10.1.14;8.14 - Exercises;217
10.1.15;References;218
10.2;Chapter 9 - Theory of Detonation;220
10.2.1;9.1 - Introduction;220
10.2.2;9.2 - Definitions;221
10.2.2.1;9.2.1 - Detonation;221
10.2.2.2;9.2.2 - Steady Detonation;221
10.2.2.3;9.2.3 - Ideal and Nonideal Detonation;221
10.2.2.4;9.2.4 - Entropy;221
10.2.2.5;9.2.5 - Isentrope;221
10.2.3;9.3 - CJ detonation theory;221
10.2.3.1;9.3.1 - CJ Model;221
10.2.3.2;9.3.2 - Solution to the CJ Model;222
10.2.3.3;9.3.3 - Estimating the CJ Values in Condensed Explosive;223
10.2.3.4;9.3.4 - Solution to CJ Theory;224
10.2.3.5;9.3.5 - Example for Pressure Estimate;224
10.2.4;9.4 - ZND theory;225
10.2.4.1;9.4.1 - ZND Model;225
10.2.4.2;9.4.2 - Solution to the ZND Model;226
10.2.4.3;9.4.3 - Limitation of CJ and ZND Theories;229
10.2.5;9.5 - Direct numerical solution;231
10.2.6;9.6 - Two-dimensional detonation theories;232
10.2.6.1;9.6.1 - A General Description of 2D Nonideal Steady Detonation;232
10.2.6.2;9.6.2 - Detonation Shock Dynamics;233
10.2.6.3;9.6.3 - Streamline Approach;233
10.2.7;9.7 - Equation of state;234
10.2.7.1;9.7.1 - EoS Without Explicit Chemistry;234
10.2.7.2;9.7.2 - EoS with Explicit Chemistry;234
10.2.7.3;9.7.3 - Hugoniot for Commercial Explosives and Rocks;234
10.2.8;9.8 - Chemical reaction rate;235
10.2.9;9.9 - Rarefaction waves;236
10.2.10;9.10 - Summary;237
10.2.10.1;9.10.1 - CJ Theory;237
10.2.10.2;9.10.2 - ZND Theory;238
10.2.10.3;9.10.3 - Limitation of CJ and ZND Theories;238
10.2.10.4;9.10.4 - Direct Numerical Solution;238
10.2.10.5;9.10.5 - Detonation Shock Dynamics;238
10.2.10.6;9.10.6 - Streamline Approach;238
10.2.10.7;9.10.7 - EoS and Chemical Reaction Rate;238
10.2.10.8;9.10.8 - Rarefaction Waves;238
10.2.11;9.11 - Exercises;238
10.2.12;References;239
10.3;Chapter 10 - Single-Hole Blasting;240
10.3.1;10.1 - Process of rock blasting in a single hole;240
10.3.1.1;10.1.1 - Blast-Caused Fracture Pattern;240
10.3.1.2;10.1.2 - Blasting Process in a Blasthole;242
10.3.2;10.2 - Borehole pressures;243
10.3.2.1;10.2.1 - Definitions of Borehole Pressure and Detonation Wave;243
10.3.2.2;10.2.2 - Borehole Pressure Measured From Block Models;244
10.3.2.3;10.2.3 - Borehole Pressure From Field Measurements;245
10.3.2.4;10.2.4 - Summary of Borehole Pressure Measurement;245
10.3.3;10.3 - Stress waves close to boreholes;246
10.3.4;10.4 - Borehole expansion;247
10.3.5;10.5 - Gas velocity;248
10.3.6;10.6 - Crushed zone;248
10.3.7;10.7 - Velocity of crack propagation;248
10.3.7.1;10.7.1 - Theoretical Prediction;248
10.3.7.2;10.7.2 - Measurement;249
10.3.8;10.8 - Movement of fragments during blasting;249
10.3.8.1;10.8.1 - Measurement;249
10.3.8.2;10.8.2 - Factors Influencing Burden Velocity;249
10.3.8.2.1;10.8.2.1 - Charge Weight and Charge Length;249
10.3.8.2.2;10.8.2.2 - Burden;250
10.3.9;10.9 - Disturbed zone surrounding a blasthole;251
10.3.9.1;10.9.1 - Measurements on Fractured Zone;251
10.3.9.1.1;10.9.1.1 - Measurements From Decoupled Charge in the Field;252
10.3.9.2;10.9.2 - Empirical Formulas for Fractured Zone;252
10.3.10;10.10 - Energy distribution;253
10.3.10.1;10.10.1 - Equation of Energy Distribution;253
10.3.10.2;10.10.2 - Determination of Each Form of Energy;253
10.3.10.2.1;10.10.2.1 - Fragmentation Energy;253
10.3.10.2.2;10.10.2.2 - Seismic Energy;253
10.3.10.2.3;10.10.2.3 - Kinetic Energy;254
10.3.10.2.4;10.10.2.4 - Rotation Energy ER;254
10.3.10.2.5;10.10.2.5 - Energy Carried by Gases Escaping from Stemming;254
10.3.10.2.6;10.10.2.6 - Internal Fracturing Energy;254
10.3.10.2.7;10.10.2.7 - Other Forms of Energy;255
10.3.10.3;10.10.3 - Measurement of Each Form of Energy;255
10.3.10.3.1;10.10.3.1 - Fragmentation Energy, Seismic Energy, and Kinetic Energy;255
10.3.10.3.2;10.10.3.2 - Energy Carried Away by Gas Escaping Through Collar;255
10.3.10.3.3;10.10.3.3 - Internal Fracturing Energy;255
10.3.10.3.4;10.10.3.4 - Seismic Energy and Rock Confinement;255
10.3.11;10.11 - Concluding remarks;256
10.3.11.1;10.11.1 - Detonation Wave and Borehole Pressure;256
10.3.11.2;10.11.2 - Blast-Caused Borehole Expansion, Crushed Zone, and Fractured Zone;256
10.3.11.3;10.11.3 - Crack Velocity in Rock;256
10.3.11.4;10.11.4 - Velocity of Burden or Fragments;256
10.3.11.5;10.11.5 - Fractured Zone;256
10.3.11.6;10.11.6 - Energy Distribution in Blasting;257
10.3.12;10.12 - Exercises;257
10.3.13;References;257
11;Part IV - Basic Parameters of Rock Blasting;260
11.1;Chapter 11 - Free Surface and Swelling in Blasting;262
11.1.1;11.1 - Weakness of rock materials;262
11.1.2;11.2 - Role of free surface;262
11.1.2.1;11.2.1 - Source of Tensile Stresses;262
11.1.2.2;11.2.2 - Increase in Energy Efficiency;263
11.1.2.3;11.2.3 - Reduction of Ground Vibrations;263
11.1.3;11.3 - Dynamic tensile fracture—spalling in rock blasting;263
11.1.3.1;11.3.1 - Principle of Spalling;263
11.1.3.2;11.3.2 - Spalling Close to Free Surface Due to Blasting;263
11.1.4;11.4 - Spalling in the free surface far from explosive charge;268
11.1.4.1;11.4.1 - First Blast;268
11.1.4.2;11.4.2 - Second Blast;269
11.1.4.3;11.4.3 - Third Blast;270
11.1.4.4;11.4.4 - Spalling in the Top of Drift;271
11.1.4.5;11.4.5 - Summary on Spalling;271
11.1.5;11.5 - Swelling in blasting;273
11.1.5.1;11.5.1 - Case 1—Natural Swelling;273
11.1.5.2;11.5.2 - Case 2—A Limited Space for Swelling;273
11.1.5.3;11.5.3 - Case 3—A Small Swelling Space;273
11.1.5.4;11.5.4 - Case 4—Dynamic Swelling Space;274
11.1.6;11.6 - Creation of free surface and swelling space by blasting;275
11.1.7;11.7 - On applications;276
11.1.8;11.8 - Concluding remarks;276
11.1.8.1;11.8.1 - Free Surface in Rock Blasting;276
11.1.8.2;11.8.2 - Geometrical Shape of a Free Surface;277
11.1.8.3;11.8.3 - Free Surface and Rock Support;277
11.1.8.4;11.8.4 - Swelling Space;277
11.1.9;11.9 - Exercises;277
11.1.10;References;277
11.2;Chapter 12 - Burden and Spacing;278
11.2.1;12.1 - Angle of breakage;278
11.2.2;12.2 - Specific charge;280
11.2.2.1;12.2.1 - Definition of Specific Charge;280
11.2.2.2;12.2.2 - Actual Stress and Energy Distribution;280
11.2.2.2.1;12.2.2.1 - Initiation Position;280
11.2.2.2.2;12.2.2.2 - Quantity of Initiation Positions;280
11.2.2.2.3;12.2.2.3 - Stemming;281
11.2.2.2.4;12.2.2.4 - Delay Time and Initiation Accuracy;281
11.2.2.2.5;12.2.2.5 - Misfire;281
11.2.2.2.6;12.2.2.6 - Coupled and Decoupled Charge;282
11.2.2.2.7;12.2.2.7 - Drilling Plan;282
11.2.2.3;12.2.3 - Determining the Specific Charge;282
11.2.3;12.3 - Diameter of blastholes;282
11.2.3.1;12.3.1 - Velocity of Detonation (VOD);282
11.2.3.2;12.3.2 - Quality of Rock Drilling;283
11.2.3.3;12.3.3 - Production and Productivity;283
11.2.3.4;12.3.4 - Fragmentation;283
11.2.3.5;12.3.5 - Cost of Development;283
11.2.3.6;12.3.6 - Back Break;283
11.2.3.7;12.3.7 - Ground Vibrations;284
11.2.3.8;12.3.8 - Determining the Diameter of Blasthole;284
11.2.4;12.4 - Burden;284
11.2.4.1;12.4.1 - Factors Related to Burden;284
11.2.4.1.1;12.4.1.1 - Diameter of Blasthole;284
11.2.4.1.2;12.4.1.2 - Decoupled Charge;284
11.2.4.1.3;12.4.1.3 - Rock Properties;284
11.2.4.1.4;12.4.1.4 - Explosive;284
11.2.4.1.5;12.4.1.5 - Specific Charge;285
11.2.4.1.6;12.4.1.6 - Wave Attenuation;285
11.2.4.1.7;12.4.1.7 - Fragmentation;285
11.2.4.1.8;12.4.1.8 - Production and Productivity;285
11.2.4.1.9;12.4.1.9 - Vibrations;285
11.2.4.2;12.4.2 - Determining the Burden;285
11.2.4.2.1;12.4.2.1 - Empirical Method;285
11.2.4.2.2;12.4.2.2 - Determining the Burden in Surface Control;285
11.2.4.2.3;12.4.2.3 - Determining the Burden in Production Blasting;286
11.2.5;12.5 - Spacing;288
11.2.5.1;12.5.1 - Relation Between Burden and Spacing in Ordinary Blasting;288
11.2.5.1.1;12.5.1.1 - Case S>B;288
11.2.5.1.2;12.5.1.2 - Case S?B;289
11.2.5.2;12.5.2 - Relation Between Burden and Spacing in Smooth Blasting;291
11.2.6;12.6 - Concluding remarks;291
11.2.6.1;12.6.1 - Angle of Breakage;291
11.2.6.2;12.6.2 - Specific Charge;291
11.2.6.3;12.6.3 - Diameter of Blasthole;292
11.2.6.4;12.6.4 - Burden;292
11.2.6.5;12.6.5 - Spacing;292
11.2.7;12.7 - Exercises;292
11.2.8;References;292
11.3;Chapter 13 - Stemming and Charge Length;294
11.3.1;13.1 - Effect of stemming on detonation wave and energy;294
11.3.1.1;13.1.1 - Energy Loss From Collar and Stemming;294
11.3.1.2;13.1.2 - Reflection-Induced Variation of Detonation Wave;295
11.3.2;13.2 - Role of stemming in blasting;297
11.3.2.1;13.2.1 - To Avoid or Reduce Energy Loss;297
11.3.2.1.1;13.2.1.1 - Analysis;297
11.3.2.1.2;13.2.1.2 - Confirmation From Measurements;297
11.3.2.2;13.2.2 - To Keep Explosive in Blastholes;298
11.3.2.3;13.2.3 - To Reduce Fly Rock and Air Blast;298
11.3.2.4;13.2.4 - To Reinforce Borehole Pressure by Using Better Stemming Materials;298
11.3.2.5;13.2.5 - To Increase Crack Density and Crack Length;298
11.3.2.6;13.2.6 - To Consume Some Energy;298
11.3.3;13.3 - Example of improved fragmentation by better stemming;299
11.3.4;13.4 - Determining the sizes and material of stemming;299
11.3.4.1;13.4.1 - Case A—One Primer Placed Close to the Collar;300
11.3.4.2;13.4.2 - Case B—One Primer Placed at the Middle of Charged Hole;300
11.3.4.3;13.4.3 - Case C—One Primer Placed at the Bottom of Charged Hole;300
11.3.5;13.5 - Charge length;301
11.3.6;13.6 - Concluding remarks;302
11.3.6.1;13.6.1 - Effect of Stemming on Detonation Energy;302
11.3.6.2;13.6.2 - Effect of Stemming on Detonation Wave and Rock Fracture;302
11.3.6.3;13.6.3 - Functions of Stemming;303
11.3.6.4;13.6.4 - How to Choose Correct Stemming;303
11.3.6.5;13.6.5 - Necessity of Stemming;303
11.3.6.6;13.6.6 - Charge Length;303
11.3.7;13.7 - Exercises;303
11.3.8;References;304
11.4;Chapter 14 - Air Deck and Smooth Blasting;306
11.4.1;14.1 - Air deck;306
11.4.1.1;14.1.1 - Background;306
11.4.1.2;14.1.2 - Laboratory Experiments;306
11.4.1.3;14.1.3 - Parameters of Air Deck Charge;308
11.4.1.4;14.1.4 - Results From Industrial Applications;308
11.4.1.5;14.1.5 - Recommendation for Air Deck Charge;309
11.4.2;14.2 - Decoupled charge;309
11.4.2.1;14.2.1 - Definition of Decoupling and Coupling;309
11.4.2.2;14.2.2 - Mechanism of Decoupled Charge;310
11.4.2.3;14.2.3 - Mechanism of Decoupled Charge With Liquid or Solid Materials;310
11.4.2.4;14.2.4 - Effect of Decoupling Ratio on Fragmentation;311
11.4.2.5;14.2.5 - Application of Decoupled Charge;312
11.4.2.6;14.2.6 - Air Cavity Charge;312
11.4.3;14.3 - Deck charge;313
11.4.3.1;14.3.1 - Principles of Deck Charge;313
11.4.3.2;14.3.2 - Shock Wave Attenuation in Stemming;314
11.4.4;14.4 - Principles of smooth blasting and presplit technique;315
11.4.4.1;14.4.1 - Stress Analysis;315
11.4.4.2;14.4.2 - Experiments;316
11.4.5;14.5 - Smooth blasting;316
11.4.5.1;14.5.1 - Burden and Spacing;316
11.4.5.2;14.5.2 - Factors Influencing Quality of Smooth Blasting;317
11.4.5.3;14.5.3 - Result From Smooth Blasting;317
11.4.6;14.6 - Presplit blasting;318
11.4.6.1;14.6.1 - Spacing;318
11.4.6.2;14.6.2 - Examples from Rock Engineering;318
11.4.7;14.7 - Special methods in smooth and presplit blasting;318
11.4.8;14.8 - Concluding remarks;319
11.4.8.1;14.8.1 - Air Deck Technique;319
11.4.8.2;14.8.2 - Decoupled Charge;319
11.4.8.3;14.8.3 - Deck Charge;319
11.4.8.4;14.8.4 - Smooth Blasting;319
11.4.8.5;14.8.5 - Crack Velocity and Stress Superposition;319
11.4.8.6;14.8.6 - Presplit Technique;319
11.4.9;14.9 - Exercises;320
11.4.10;References;320
11.5;Chapter 15 - Primer Placement;322
11.5.1;15.1 - Wastage of detonation energy;322
11.5.1.1;15.1.1 - Single-Primer Placement;322
11.5.1.1.1;15.1.1.1 - Primer Close to Collar;322
11.5.1.1.2;15.1.1.2 - Primer at Middle of Charge;323
11.5.1.1.3;15.1.1.3 - Primer Between Middle and Bottom of Charged Hole;323
11.5.1.2;15.1.2 - Double-Primer Placement;323
11.5.2;15.2 - Primer position and misfires;324
11.5.2.1;15.2.1 - The Reason for Misfires;325
11.5.2.2;15.2.2 - Field Measurements of Misfires in Sublevel Caving;326
11.5.3;15.3 - Stress wave propagation and stress distribution;326
11.5.3.1;15.3.1 - Single-Primer Placement;326
11.5.3.2;15.3.2 - Double-Primer Placement;328
11.5.3.2.1;15.3.2.1 - Shock Wave Collision;328
11.5.3.2.2;15.3.2.2 - Stress Distribution;328
11.5.4;15.4 - Amplitude of stresses in rock;330
11.5.5;15.5 - Rock fragmentation;330
11.5.5.1;15.5.1 - Fragmentation From Single-Primer Placement;331
11.5.5.2;15.5.2 - Fragmentation From Double-Primer Placement;331
11.5.6;15.6 - Ore extraction;331
11.5.6.1;15.6.1 - Single-Primer Placement;331
11.5.6.2;15.6.2 - Double-Primer Placement;332
11.5.7;15.7 - Productivity;334
11.5.7.1;15.7.1 - Relation Between Ore Extraction and Fragmentation;334
11.5.7.2;15.7.2 - Relation Between Ore Extraction and Iron Content;334
11.5.8;15.8 - Mining safety relevant to brow damage;334
11.5.8.1;15.8.1 - Single-Primer Placement;334
11.5.8.2;15.8.2 - Double-Primer Placement;335
11.5.9;15.9 - Potential economy of improving blasting;335
11.5.10;15.10 - On double-primer placement;335
11.5.11;15.11 - Concluding remarks;335
11.5.12;15.12 - Exercises;336
11.5.13;References;337
11.6;Chapter 16 - Delay Times;338
11.6.1;16.1 - Reasons for a delay time;338
11.6.1.1;16.1.1 - Ground Vibrations;338
11.6.1.2;16.1.2 - Rock Damage Nearby;340
11.6.1.3;16.1.3 - Seismic Events;340
11.6.1.4;16.1.4 - Rock Fragmentation;340
11.6.2;16.2 - Factors to be considered in determining delay time;340
11.6.2.1;16.2.1 - Stress Distribution;340
11.6.2.2;16.2.2 - Crack Propagation;341
11.6.2.3;16.2.3 - Detonation Waves;341
11.6.2.4;16.2.4 - Confinement and Boundary Conditions;342
11.6.2.5;16.2.5 - Rock Fracture Nearby;342
11.6.2.6;16.2.6 - Vibrations in Far Field;342
11.6.2.7;16.2.7 - Movement of Fragments;342
11.6.3;16.3 - Delay time in a single blasthole;342
11.6.3.1;16.3.1 - One Detonator Position;342
11.6.3.2;16.3.2 - Multidetonator Positions;344
11.6.3.2.1;16.3.2.1 Same Delay Time;344
11.6.3.2.2;16.3.2.2 Different Delay Times;344
11.6.4;16.4 - Delay time between two adjacent blastholes;344
11.6.4.1;16.4.1 - Background;344
11.6.4.2;16.4.2 - Fragmentation Radius Rfg Smaller Than Spacing S;345
11.6.4.3;16.4.3 - Fragmentation Radius Rfg Equal to or Larger Than Spacing S;349
11.6.5;16.5 - Delay time between adjacent rows;350
11.6.5.1;16.5.1 - Stress Wave Superposition;350
11.6.5.2;16.5.2 - Collision of Fragments;350
11.6.5.2.1;16.5.2.1 Collision Between Fragments From Multirows in Open Pit Blasting;350
11.6.5.2.2;16.5.2.2 Collision of Fragments in Sublevel Caving;351
11.6.6;16.6 - Simultaneous initiation in production blasts;351
11.6.6.1;16.6.1 - Stress Analysis;352
11.6.6.2;16.6.2 - Test Results;352
11.6.7;16.7 - Comments on delay time;353
11.6.8;16.8 - Concluding remarks;353
11.6.8.1;16.8.1 - Reasons for a Delay Time and Factors Affecting Delay Time;353
11.6.8.2;16.8.2 - Delay Time in a Single Hole;353
11.6.8.3;16.8.3 - Stress Distribution and Delay Time;353
11.6.8.4;16.8.4 - Simultaneous Blasting;354
11.6.9;16.9 - Exercises;354
11.6.10;References;354
12;Part V - Rock Blasting in Engineering;356
12.1;Chapter 17 - Rock Blasting in Open Cut and Tunneling;358
12.1.1;17.1 - Introduction;358
12.1.2;17.2 - Open cut blasting in underground mining;359
12.1.2.1;17.2.1 - Effect of Open Cut on Mining Production;359
12.1.2.2;17.2.2 - Cut Blasting Methods in Underground Mining;359
12.1.2.2.1;17.2.2.1 - Raise Boring;360
12.1.2.2.2;17.2.2.2 - Slot Drilling;363
12.1.3;17.3 - Cut Blasting in Drifting and Tunneling;366
12.1.3.1;17.3.1 - Cut Blasting With Two Uncharged Holes;367
12.1.3.2;17.3.2 - Other Methods for Cut Blasting;367
12.1.4;17.4 - Detonators and Delay Time;369
12.1.4.1;17.4.1 - Delay Time;369
12.1.4.2;17.4.2 - Detonators;369
12.1.5;17.5 - Slashing hole blasting;369
12.1.5.1;17.5.1 - Burden;369
12.1.5.2;17.5.2 - Delay Time;369
12.1.5.3;17.5.3 - Initiation Sequence;370
12.1.6;17.6 - Disturbed zone;370
12.1.6.1;17.6.1 - Influence of Disturbed Zone on Drift Stability and Safety;370
12.1.6.2;17.6.2 - Influence of Disturbed Zone on Rock Support;370
12.1.6.3;17.6.3 - Factors Influencing Disturbed Zone;370
12.1.7;17.7 - Blastholes in roofs and walls;371
12.1.7.1;17.7.1 - Charge and Burden;371
12.1.7.2;17.7.2 - Delay Time and Initiation;372
12.1.8;17.8 - Bottom and slashing holes;373
12.1.9;17.9 - Quality, safety, and economy;373
12.1.9.1;17.9.1 - Cut Blasting;373
12.1.9.2;17.9.2 - In Situ Stress Field;373
12.1.9.3;17.9.3 - Decoupled Charge;373
12.1.10;17.10 - Concluding remarks;374
12.1.10.1;17.10.1 - Open Cut Blasting;374
12.1.10.2;17.10.2 - Cut Blasting in Tunneling;375
12.1.10.3;17.10.3 - Disturbed Zone and Decoupled Charge;375
12.1.11;17.11 - Exercises;375
12.1.12;References;376
12.2;Chapter 18 - Rock Blasting in Open Pit Mining;378
12.2.1;18.1 - Drilling plan;378
12.2.1.1;18.1.1 - Burden and Spacing;378
12.2.1.2;18.1.2 - Subdrilling;379
12.2.1.2.1;18.1.2.1 - Role of Subdrilling;379
12.2.1.2.2;18.1.2.2 - Length of Subdrilling;380
12.2.1.3;18.1.3 - Inclination of Bench;380
12.2.1.3.1;18.1.3.1 - Back Break;380
12.2.1.3.2;18.1.3.2 - Production Volume;381
12.2.1.3.3;18.1.3.3 - Fragmentation Close to Bench Floor;381
12.2.2;18.2 - Blast plan;381
12.2.2.1;18.2.1 - Stemming;382
12.2.2.2;18.2.2 - Deck Charge and Air Deck;382
12.2.2.2.1;18.2.2.1 - Deck Charge;382
12.2.2.2.2;18.2.2.2 - Air Deck;382
12.2.2.3;18.2.3 - Primers;383
12.2.2.3.1;18.2.3.1 - Single Primer in Each Borehole;383
12.2.2.3.2;18.2.3.2 - Two Primers in Each Borehole;384
12.2.2.3.3;18.2.3.3 - Multiple-Primer Positions in Each Borehole;385
12.2.2.4;18.2.4 - Initiation and Delay Time;385
12.2.2.4.1;18.2.4.1 - Reasons for a Delay Time;385
12.2.2.4.2;18.2.4.2 - Choosing a Delay Time Between Holes and Between Rows;385
12.2.2.4.3;18.2.4.3 - Initiation Sequence;386
12.2.3;18.3 - Fragmentation;386
12.2.3.1;18.3.1 - Stress Superposition;386
12.2.3.1.1;18.3.1.1 - Pyrotechnic or Nonelectronic Detonators;386
12.2.3.1.2;18.3.1.2 - Electronic Detonators;386
12.2.3.2;18.3.2 - Shock Wave Collision;386
12.2.3.3;18.3.3 - Barrier to Free Face;387
12.2.3.3.1;18.3.3.1 - Principles of Barrier to Free Face;387
12.2.3.3.2;18.3.3.2 - Measures for Making a Barrier to Free Face;388
12.2.3.4;18.3.4 - Increase in Specific Charge;389
12.2.4;18.4 - Final pit slope;389
12.2.4.1;18.4.1 - Slope Angle and Mining Cost;389
12.2.4.2;18.4.2 - Quality and Stability of Slope;389
12.2.5;18.5 - Safety and environment;390
12.2.5.1;18.5.1 - Collapse of Slopes;390
12.2.5.2;18.5.2 - Fly Rocks and Air Blasts;390
12.2.5.2.1;18.5.2.1 - Insufficient Stemming;390
12.2.5.2.2;18.5.2.2 - Loose Rock or Discontinuity in Rock Mass;391
12.2.5.2.3;18.5.2.3 - Top Initiation;391
12.2.5.2.4;18.5.2.4 - High Specific Charge;391
12.2.5.3;18.5.3 - Ground Vibrations;392
12.2.6;18.6 - On presplit method and production blasting;392
12.2.7;18.7 - Concluding remarks;392
12.2.7.1;18.7.1 - Subdrilling;392
12.2.7.2;18.7.2 - Inclination of Bench;393
12.2.7.3;18.7.3 - Stemming;393
12.2.7.4;18.7.4 - Deck Charge and Air Deck;393
12.2.7.5;18.7.5 - Primer Placement;393
12.2.7.6;18.7.6 - Fragmentation;393
12.2.7.7;18.7.7 - Stability of Open Pit Slopes;393
12.2.7.8;18.7.8 - Fly Rock and Air Blast;393
12.2.8;18.8 - Exercises;393
12.2.9;References;394
12.3;Chapter 19 - Rock Blasting in Underground Mining;396
12.3.1;19.1 - Advantages and disadvantages of sublevel caving;396
12.3.2;19.2 - Drilling and charging plan;397
12.3.2.1;19.2.1 - Burden and Spacing;397
12.3.2.1.1;19.2.1.1 - Burden;397
12.3.2.1.2;19.2.1.2 - Spacing;397
12.3.2.2;19.2.2 - Length of Blastholes;398
12.3.2.2.1;19.2.2.1 - Large Ore Body;398
12.3.2.2.2;19.2.2.2 - Narrow Ore Body;399
12.3.2.3;19.2.3 - Uncharged Length;400
12.3.2.3.1;19.2.3.1 - As Delay Time Is Longer Than Fragmentation Time;400
12.3.2.3.2;19.2.3.2 - As Delay Time Is Shorter Than Fragmentation Time;400
12.3.2.4;19.2.4 - Precision of Rock Drilling;400
12.3.3;19.3 - Inclination of rings;400
12.3.3.1;19.3.1 - Loading and Ore Flow;400
12.3.3.2;19.3.2 - Brow Protection;402
12.3.4;19.4 - Single- or multiple-ring blasting;403
12.3.4.1;19.4.1 - Single-Ring Blasting;403
12.3.4.2;19.4.2 - Double-Ring Blasting;404
12.3.5;19.5 - Delay time and initiation sequence;405
12.3.5.1;19.5.1 - Delay Time;405
12.3.5.2;19.5.2 - Initiation Sequence;405
12.3.5.3;19.5.3 - Initiation and Delay Time in Special Cases;405
12.3.6;19.6 - Open cut and drifting;406
12.3.7;19.7 - Stemming, air deck, and detonator placement;406
12.3.8;19.8 - Back break and brow damage;407
12.3.8.1;19.8.1 - Back Break;407
12.3.8.2;19.8.2 - Brow Damage;408
12.3.8.2.1;19.8.2.1 - Consequences Caused by Brow Damage;408
12.3.8.2.2;19.8.2.2 - Factors Influencing Brow Damage;408
12.3.8.2.3;19.8.2.3 - Measures for Reducing Brow Damage;408
12.3.9;19.9 - Misfires;410
12.3.10;19.10 - Fragmentation, ore recovery, and mining profit;410
12.3.11;19.11 - Safety, environment, and vibration control;411
12.3.11.1;19.11.1 - Safety;411
12.3.11.2;19.11.2 - Environment;411
12.3.11.3;19.11.3 - Ground Vibrations;412
12.3.12;19.12 - Sublevel-caving blasting in the future;412
12.3.13;19.13 - Concluding remarks;413
12.3.13.1;19.13.1 - Characteristics of Sublevel Caving Blasting;413
12.3.13.2;19.13.2 - Subdrilling, Deviation, and Inclination;413
12.3.13.3;19.13.3 - Single-Ring Blasting and Double-Ring Blasting;414
12.3.13.4;19.13.4 - Delay Time;414
12.3.13.5;19.13.5 - Brow Damage;414
12.3.13.6;19.13.6 - Misfire;414
12.3.13.7;19.13.7 - Other Issues Related to Sublevel Caving Blasting;414
12.3.13.8;19.13.8 - Underground Blasting in the Future;414
12.3.14;19.14 - Exercises;414
12.3.15;References;415
12.4;Chapter 20 - Numerical Simulation of Rock Blasting;416
12.4.1;20.1 - Fracture characteristics of rock;416
12.4.1.1;20.1.1 - Characteristics of Rock Material;416
12.4.1.1.1;20.1.1.1 - Composition;416
12.4.1.1.2;20.1.1.2 - Boundary and Porosity;416
12.4.1.1.3;20.1.1.3 - Intergranular and Intragranular Fracture;417
12.4.1.1.4;20.1.1.4 - Geological Structures;417
12.4.1.2;20.1.2 - Characteristics of Rock Fracture;418
12.4.1.2.1;20.1.2.1 - Attenuation;418
12.4.1.2.2;20.1.2.2 - Fracture Mode;418
12.4.1.2.3;20.1.2.3 - Loading Rate Effect;418
12.4.1.2.4;20.1.2.4 - Confining Pressure Effect;418
12.4.1.2.5;20.1.2.5 - Fatigue Strength;418
12.4.1.2.6;20.1.2.6 - Fluid or Water Effect;418
12.4.2;20.2 - Process of rock blasting in a blasthole;419
12.4.2.1;20.2.1 - Detonation Waves at Different Positions;419
12.4.2.2;20.2.2 - Detonation Waves and Gases;420
12.4.3;20.3 - Crushing, fracture, and fragmentation;420
12.4.3.1;20.3.1 - Crushed Zone;420
12.4.3.2;20.3.2 - Rock Fracture;421
12.4.3.3;20.3.3 - Rock Fragmentation;421
12.4.4;20.4 - Shock wave collision;422
12.4.5;20.5 - Stemming;422
12.4.6;20.6 - Malfunction or misfire;423
12.4.7;20.7 - Numerical simulation of detonation;423
12.4.7.1;20.7.1 - Ideal Detonation;423
12.4.7.2;20.7.2 - Nonideal Detonation;423
12.4.7.3;20.7.3 - Equations of State for Detonation Products;424
12.4.7.3.1;20.7.3.1 - JWL EoS for Explosive Detonation;424
12.4.7.3.2;20.7.3.2 - Williamsburg EoS;424
12.4.8;20.8 - Numerical modeling of rock blasting;425
12.4.8.1;20.8.1 - Models Used in Rock Fracture;425
12.4.8.2;20.8.2 - Modeling Rock Fracture by Blasting;425
12.4.8.3;20.8.3 - Blast Modeling for Whole Process From Detonation to Muckpile;426
12.4.8.4;20.8.4 - Challenges in Blast Modeling;428
12.4.9;20.9 - Concluding remarks;429
12.4.10;20.10 - Exercises;429
12.4.11;References;429
13;Part VI - Rock Blasting on Economy, Safety, and Vibrations;432
13.1;Chapter 21 - Optimum Fragmentation;434
13.1.1;21.1 - Effects of fragmentation on mining engineering;434
13.1.1.1;21.1.1 - Effect of Fragmentation on Energy Consumption;434
13.1.1.2;21.1.2 - Effect of Fragmentation on Ore Recovery;436
13.1.1.3;21.1.3 - Effect of Fragmentation on Productivity;436
13.1.1.3.1;21.1.3.1 - Extraction Speed;436
13.1.1.3.2;21.1.3.2 - Mill Throughput;436
13.1.2;21.2 - Factors influencing fragmentation;437
13.1.2.1;21.2.1 - Explosives;437
13.1.2.2;21.2.2 - Initiators;437
13.1.2.3;21.2.3 - Rocks;438
13.1.2.4;21.2.4 - Drilling Plan;438
13.1.2.5;21.2.5 - Blast Plan;438
13.1.3;21.3 - Definition of optimum fragmentation;438
13.1.4;21.4 - Possibility of optimum fragmentation;439
13.1.4.1;21.4.1 - Possibility of Changing Energy Distribution;439
13.1.4.1.1;21.4.1.1 - Different Energy Efficiencies;439
13.1.4.1.2;21.4.1.2 - Effects of Blast-Induced Cracks on Grinding;439
13.1.4.2;21.4.2 - To Increase Energy Efficiency in Blasting;441
13.1.4.3;21.4.3 - To Increase Energy Efficiency in Other Operations;441
13.1.5;21.5 - Measures for optimum fragmentation;441
13.1.5.1;21.5.1 - Redistribution of Energy Consumption;441
13.1.5.1.1;21.5.1.1 - Feasibility of Redistribution of Energy Expenditure;442
13.1.5.1.2;21.5.1.2 - Measures for Energy Redistribution;442
13.1.5.2;21.5.2 - To Increase Explosive Energy in Blasting;442
13.1.5.3;21.5.3 - To Increase Energy Efficiency in Individual Operations;443
13.1.5.4;21.5.4 - Ore Recovery, Productivity, Safety, and Environment Control;443
13.1.6;21.6 - Laboratory tests and industry practices on optimum fragmentation;443
13.1.6.1;21.6.1 - Laboratory Tests;443
13.1.6.2;21.6.2 - Industry Practices;443
13.1.7;21.7 - How to achieve optimum fragmentation;444
13.1.7.1;21.7.1 - Step 1—To Make Successful Blasting;444
13.1.7.2;21.7.2 - Step 2—To Achieve Optimum Fragmentation;444
13.1.8;21.8 - Concluding remarks;444
13.1.9;21.9 - Exercises;445
13.1.10;References;445
13.2;Chapter 22 - Effect of Blasting on Engineering Economy;448
13.2.1;22.1 - Introduction;448
13.2.2;22.2 - Ore recovery;448
13.2.2.1;22.2.1 - Definition;448
13.2.2.2;22.2.2 - Ore Loss;450
13.2.2.2.1;22.2.2.1 - Loss of Natural Resources;450
13.2.2.2.2;22.2.2.2 - Increase in Mining Costs;450
13.2.2.2.3;22.2.2.3 - Earlier Heavy Investments Such as Developing New Main Levels;451
13.2.3;22.3 - Dilution;452
13.2.4;22.4 - Measures for increasing ore recovery;452
13.2.4.1;22.4.1 - Scientific Rock Blasting;452
13.2.4.2;22.4.2 - Optimal Mining Planning;454
13.2.4.3;22.4.3 - Correct Control of Cutoff Grade;454
13.2.5;22.5 - To increase productivity by blasting;455
13.2.5.1;22.5.1 - Speed of Ore Extraction;455
13.2.5.2;22.5.2 - Relation Between Fragmentation and Recovery;456
13.2.6;22.6 - To reduce fractured zone so as to reduce costs in rock support;457
13.2.7;22.7 - Optimization of fragmentation;457
13.2.8;22.8 - Concluding remarks;458
13.2.8.1;22.8.1 - Direct Economic Loss Due to Ore Loss in Mining;458
13.2.8.2;22.8.2 - Indirect Economic Losses Due to Ore Loss in Mining;458
13.2.8.3;22.8.3 - Dilution-Caused Economic Loss;458
13.2.8.4;22.8.4 - Measures for Increasing Ore Recovery;458
13.2.8.5;22.8.5 - Effect of Fragmentation on Mining Productivity;458
13.2.8.6;22.8.6 - Effect of Blasting on Rock Support;458
13.2.9;22.9 - Exercises;458
13.2.10;References;459
13.3;Chapter 23 - Safety in Rock Engineering;460
13.3.1;23.1 - Rock spalling;460
13.3.1.1;23.1.1 - Location of Spalling;460
13.3.1.2;23.1.2 - Factors Affecting Spalling;461
13.3.1.3;23.1.3 - Estimate and Reduction of Spalling;462
13.3.2;23.2 - Remained roofs;463
13.3.2.1;23.2.1 - Common Method for Breaking Down a Remained Roof;463
13.3.2.2;23.2.2 - New Method for Breaking Down a Remained Roof;464
13.3.3;23.3 - Seismic events;465
13.3.3.1;23.3.1 - Simplest Principle of Seismic Events;465
13.3.3.2;23.3.2 - Relation Between Blasting and Seismic Events;466
13.3.3.3;23.3.3 - Characteristics of Seismic Events in Underground Mining;466
13.3.3.3.1;23.3.3.1 - Location of Seismic Events;466
13.3.3.3.2;23.3.3.2 - Characteristics of Stresses in Seismic Events;466
13.3.3.4;23.3.4 - Consequence of Seismic Events;469
13.3.3.5;23.3.5 - Measures for Reducing Seismic Events;469
13.3.3.5.1;23.3.5.1 - To Reduce the Weight of Explosive That Is Initiated Instantaneously;469
13.3.3.5.2;23.3.5.2 - Correct Loading Method Under Hanging Wall;470
13.3.3.5.3;23.3.5.3 - To Avoid Dynamic Impact by Caved Rock;471
13.3.4;23.4 - Rock fall;472
13.3.4.1;23.4.1 - Reasons for Rock Fall;472
13.3.4.2;23.4.2 - Small-Scale Rock Fall;473
13.3.4.3;23.4.3 - Large-Scale Rock Fall;473
13.3.4.4;23.4.4 - Measures for Reducing Rock Fall;473
13.3.5;23.5 - Brow damage;474
13.3.6;23.6 - Shock wave damage in underground mines;477
13.3.6.1;23.6.1 - Shock Wave Damage Caused by Blasting;477
13.3.6.2;23.6.2 - Measures for Reducing Shock Wave Damage by Blasting;477
13.3.7;23.7 - Slope collapse in open pit mines;478
13.3.8;23.8 - Fly rock and air blast in open pit mines;478
13.3.9;23.9 - Rock burst;478
13.3.10;23.10 - Explosives and detonators;479
13.3.11;23.11 - Concluding remarks;480
13.3.11.1;23.11.1 - Spalling in Tunnel Surfaces;480
13.3.11.2;23.11.2 - Remained Roof;480
13.3.11.3;23.11.3 - Seismic Events;480
13.3.11.4;23.11.4 - Rock Fall;480
13.3.11.5;23.11.5 - Brow Damage;480
13.3.11.6;23.11.6 - Air Shock Damage;480
13.3.11.7;23.11.7 - Slope Collapse;480
13.3.11.8;23.11.8 - Fly Rock, Air Blast, and Rock Burst;480
13.3.12;23.12 - Exercises;481
13.3.13;References;481
13.4;Chapter 24 - Reduction of Ground Vibrations;482
13.4.1;24.1 - Characteristics of blast-induced ground vibrations;482
13.4.1.1;24.1.1 - Amplitude of Vibration Waves;483
13.4.1.2;24.1.2 - Waveform of Vibrations;484
13.4.1.3;24.1.3 - Technical Ways Toward Vibration Control;484
13.4.1.4;24.1.4 - Evaluation and Regulations of Ground Vibrations;486
13.4.2;24.2 - To reduce original stress waves caused by blasting;486
13.4.2.1;24.2.1 - To Choose Smaller Diameter of Borehole;486
13.4.2.2;24.2.2 - To Choose Smaller Burden;486
13.4.2.3;24.2.3 - To Choose a Short Blasthole;489
13.4.2.3.1;24.2.3.1 - Theoretical Analysis;489
13.4.2.3.2;24.2.3.2 - Confirmation From Practical Blasts;490
13.4.2.4;24.2.4 - To Divide a Single Blast Into Multiple Blasts;490
13.4.2.4.1;24.2.4.1 - DSB Method;490
13.4.2.4.2;24.2.4.2 - Application in Industry;491
13.4.2.5;24.2.5 - To Avoid Simultaneous Multihole Initiation at the Beginning of a Blast;492
13.4.2.6;24.2.6 - To Use Decoupled Charge;493
13.4.2.7;24.2.7 - To Use Multideck Charge;493
13.4.2.8;24.2.8 - Other Methods;493
13.4.3;24.3 - To make use of stress wave superposition;493
13.4.3.1;24.3.1 - Fundamental Principles;493
13.4.3.2;24.3.2 - Reproducible Waveforms of Single Shots;494
13.4.3.3;24.3.3 - Applications in Mines;496
13.4.3.4;24.3.4 - Comments on Wave Superposition Method;496
13.4.4;24.4 - To make ground vibrations damped;496
13.4.4.1;24.4.1 - Theoretical Background;496
13.4.4.2;24.4.2 - To Change Initiation Sequence and Reduce Vibrations;498
13.4.4.3;24.4.3 - Application at Malmberget Mine;500
13.4.4.4;24.4.4 - Comments;501
13.4.5;24.5 - To prevent stress waves from propagating into inhabited area;501
13.4.5.1;24.5.1 - Slot;501
13.4.5.2;24.5.2 - Vibration Barrier;503
13.4.6;24.6 - Concluding remarks;503
13.4.6.1;24.6.1 - Feasibility of Vibration Reduction;503
13.4.6.2;24.6.2 - Basic Principles for Vibration Reduction;503
13.4.6.3;24.6.3 - First Way to Reduce Vibration;503
13.4.6.4;24.6.4 - Second Way to Reduce Vibration;503
13.4.6.5;24.6.5 - Third Way to Reduce Vibration;503
13.4.6.6;24.6.6 - Fourth Way to Reduce Vibration;504
13.4.6.7;24.6.7 - Two Cheap and Simple Methods for Vibration Reduction;504
13.4.6.8;24.6.8 - Controlling Vibrations by Combining Different Methods;504
13.4.7;24.7 - Exercises;504
13.4.8;References;504
13.5;Chapter 25 - Special Blasting Techniques;506
13.5.1;25.1 - Demolition blasting;506
13.5.1.1;25.1.1 - Methods for Demolishing a Chimney;506
13.5.1.2;25.1.2 - Vibration and Safety;507
13.5.2;25.2 - Reinforcing soft ground by blasting;508
13.5.3;25.3 - Shaped charges and applications;508
13.5.3.1;25.3.1 - Shaped Charges;508
13.5.3.2;25.3.2 - Applications;510
13.5.4;25.4 - Well stimulation in oil and gas production;510
13.5.5;25.5 - Explosion welding;512
13.5.6;25.6 - STUMP blasting;512
13.5.7;25.7 - Static fragmentation agents;513
13.5.8;References;514
13.6;Subject Index;516
13.7;Back cover;530



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.