Buch, Englisch, 280 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 520 g
Applications in Robotics and Complex Dynamical Systems
Buch, Englisch, 280 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 520 g
ISBN: 978-0-12-822314-7
Verlag: William Andrew Publishing
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
Weitere Infos & Material
- A high-level design process for neural-network controls through a framework of human personalities
- Cognitive load estimation for adaptive human-machine system automation
- Comprehensive error analysis beyond system innovations in Kalman filtering
- Nonlinear control
- Deep learning approaches in face analysis
- Finite multi-dimensional generalized Gamma Mixture Model Learning for feature selection
- Variational learning of finite shifted scaled Dirichlet mixture models
- From traditional to deep learning: Fault diagnosis for autonomous vehicles
- Controlling satellites with reaction wheels
- Vision dynamics-based learning control