Buch, Englisch, 178 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 459 g
Concepts, Fundamentals, and Applications
Buch, Englisch, 178 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 459 g
Reihe: Springer Series in Optical Sciences
ISBN: 978-3-031-20472-2
Verlag: Springer
This book, the first of its kind, bridges the gap between the increasingly interlinked fields of nanophotonics and artificial intelligence (AI). While artificial intelligence techniques, machine learning in particular, have revolutionized many different areas of scientific research, nanophotonics holds a special position as it simultaneously benefits from AI-assisted device design whilst providing novel computing platforms for AI. This book is aimed at both researchers in nanophotonics who want to utilize AI techniques and researchers in the computing community in search of new photonics-based hardware. The book guides the reader through the general concepts and specific topics of relevance from both nanophotonics and AI, including optical antennas, metamaterials, metasurfaces, and other photonic devices on the one hand, and different machine learning paradigms and deep learning algorithms on the other. It goes on to comprehensively survey inverse techniques for device design, AI-enabled applications in nanophotonics, and nanophotonic platforms for AI. This book will be essential reading for graduate students, academic researchers, and industry professionals from either side of this fast-developing, interdisciplinary field.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Technische Wissenschaften Technik Allgemein Technische Optik, Lasertechnologie
- Naturwissenschaften Physik Elektromagnetismus Quantenoptik, Nichtlineare Optik, Laserphysik
Weitere Infos & Material
Tentative Title: Nanophotonics and Machine Learning: Concepts, Fundamentals, and Applications
Introduction
Chapter 1 Fundamentals of Nanophotonics
1.1 Surface Plasmon Polaritons
1.2 Metamaterials and Metasurfaces
1.3 Mie Scattering
1.4 Optical Antennas
1.5 Integrated Photonics
1.6 Miscellaneous (chirality, solar cells, etc. optional)
ReferencesChapter 2 Optimization Techniques for Inverse Design
2.1 Adjoint-Based Simulation
2.2 Topological Optimization2.3 Genetic Algorithms
References
Chapter 3 Fundamentals of Artificial Intelligence
3.1 Classification of AI
3.2 Learning and Artificial Neural Networks
3.3 Convolutional Neural Network
3.4 Generative Adversarial Networks
3.5 Reinforcement Learning
3.6 Miscellaneous (some non-deep-learning models, optional)
ReferencesChapter 4 AI-Assisted Inverse Design in Nanophotonics
4.1 Metasurfaces with Arbitrary Transmission/Reflection/Absorption Properties
4.2 Metasurfaces for Beam Steering and Polarization control4.3 Metasurfaces for Thermal Management
4.4 Chiral Metamaterials
4.5 Controlling Scattering Properties of Nanostructures
4.6 Classification of Photonic Modes
References
Chapter 5 AI-enabled Applications in Nanophotonics
5.1 Knowledge Discovery and Migration
5.2 Predictors for Vectorial Fields
References
Chapter 6 Nanophotonic Platforms for AI
6.1 Neural Networks Based on Diffractive Optics
6.2 Artificial Neural Inference Using Scattering Media
6.3 Deep Learning with Nanophotonic Circuits
6.4 Training of Photonic Neural Networks
References
Chapter 7 Concluding Remarks and Outlook
References
Index




