Zhou / Wen / Cai | Fundamentals of Structural Dynamics | Buch | 978-0-12-823704-5 | sack.de

Buch, Englisch, 286 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 480 g

Zhou / Wen / Cai

Fundamentals of Structural Dynamics


Erscheinungsjahr 2021
ISBN: 978-0-12-823704-5
Verlag: William Andrew Publishing

Buch, Englisch, 286 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 480 g

ISBN: 978-0-12-823704-5
Verlag: William Andrew Publishing


Dynamics of Structural Dynamics explains foundational concepts and principles surrounding the theory of vibrations and gives equations of motion for complex systems. The book presents classical vibration theory in a clear and systematic way, detailing original work on vehicle-bridge interactions and wind effects on bridges. Chapters give an overview of structural vibrations, including how to formulate equations of motion, vibration analysis of a single-degree-of-freedom system, a multi-degree-of-freedom system, and a continuous system, the approximate calculation of natural frequencies and modal shapes, and step-by-step integration methods. Each chapter includes extensive practical examples and problems.

This volume presents the foundational knowledge engineers need to understand and work with structural vibrations, also including the latest contributions of a globally leading research group on vehicle-bridge interactions and wind effects on bridges.
Zhou / Wen / Cai Fundamentals of Structural Dynamics jetzt bestellen!

Weitere Infos & Material


1. Overview of Structural Vibrations 2. Formulation of equations of motion 3. Vibration Analysis of Single-Degree-of-Freedom System 4. Vibration Analysis of Multi-Degree-of-Freedom System 5. Vibration analysis of continuous system (straight beam) 6. Approximate calculation of natural frequencies and modal shapes 7. Step-by step integration methods


Cai, Chenzhi
Dr Chenzhi Cai received his BS degree in civil engineering and MS degree in road and railway engineering from CSU in 2011 and 2015, respectively. He graduated from The Hong Kong Polytechnic University with a Ph.D. degree in civil engineering in 2018 and joined the Department of Bridge Engineering as well as the Wind Tunnel Laboratory of CSU as an associate professor later this year. Dr Cai's main research interests are the fields of noise and vibration control, high-speed railway bridge/elevated subway system, and the train-induced ground vibration isolation. He has participated in several research projects funded by the Hong Kong government and has also received research funding from National Natural Science Foundation of China and Hunan Provincial Natural Science Foundation of China. Dr Cai has published more than 20 papers in international journals, and some of his work is under consideration of acceptance by UK CIBSE Guide.

Wen, Ying
Dr Ying Wen was employed in the School of Civil Engineering, CSU, after obtaining his Ph.D. degree in 2010, and he was promoted to be the associate professor in 2012. He took up the research associate in the Department of Civil and Structural Engineering, The Hong Kong Polytechnic University in 2011. In 2014, Dr Wen was invited to visit the Department of Aerospace and Mechanical Engineering, University of Southern California, for a collaborative research on the problem of moving loads on structures. After he returned to CSU in 2015, Dr Wen was appointed as the vice director of the Key Laboratory of Engineering Structures of Heavy-haul Railway, Ministry of Education. Dr Wen has interest in fields of various structural dynamics and stability, especially nonlinear mechanics of long span bridges and their dynamic stability under moving trains. Dr Wen has published more than 20 journal papers, one of which is listed as Top 25 Hottest articles published in 'Finite Elements in Analysis & Design'. He also published three Chinese monographs about statics and dynamics of structures as a co-author. Dr Wen obtained the awards of the Science and Technology Progress of Hunan Province (2006) and Zhejiang Province (2011).

Zhou, Zhihui
Zhihui Zhou is an Associate Professor in the School of Civil Engineering at Central South University in China. His research focuses on train derailment and vibration analysis. He has led several research projects, including on the safe operation of high-speed trains over railway bridges, and the safety of long-span cable-stayed bridge trains. He holds a PhD in Bridge and Tunnel Engineering, and has published over 30 papers, and two monographs.

Zeng, Qingyuan
Prof. Qingyuan Zeng is a distinguished scientist on bridge engineering in Central South University. He obtained his BS and MS degrees from the Department of Civil Engineering, Nanchang University and Department of Engineering Mechanics, Tsinghua University, in 1950 and 1956, respectively. He was elected as the member of Chinese Academy of Engineering in 1999 for his great contributions to local-global interactive buckling behavior of long-span bridge structures, train-bridge interaction dynamics and the basic theory of train derailment. He presented the principle of total potential energy with a stationary value in elastic system dynamics and the 'set-in-right-position' rule for assembling system matrices, which is a significant improvement of classical theory of structural dynamics and finite element method. Prof. Zeng has an international reputation for his originality in the transverse vibration mechanism and time-varying analysis method of train-bridge system. He has authored and co-authored more than 100 journal papers, 3 monographs and 3 textbooks. He received numerous awards, including State Science and Technology Progress Award, Distinguished Achievement Award for Railway Science and Technology from Zhan Tianyou Development Foundation, and Honorary Member Award from the China Railway Society. He has supervised more than 16 MS students and 30 Ph.D. students in the past three decades.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.